
FINITE ELEMENT METHOD SOLUTION FOR STEADY

MAGNETOHYDRODYNAMIC FLOW IN A STRAIGHT HORIZONTAL

PIPE OF ELLIPTICAL CROSS SECTION

BY

DAVID KWEYU

A THESIS SUBMITTED IN FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY IN APPLIED MATHEMATICS

SCHOOL OF MATHEMATICS, STATISTICS AND ACTUARIAL

SCIENCE

MASENO UNIVERSITY

©2022



DECLARATION

DECLARATION BY CANDIDATE:

This research thesis is my original work and has not been presented for award of a degree in any

other University. No part of this thesis may be reproduced without prior written permission of the

author and/or Maseno University.

Signature Date

DAVID KWEYU

PHD/MAT/00044/2014

DECLARATION BY THE SUPERVISORS

This research thesis has been submitted with our approval as University Supervisors.

Signature Date

Professor. Alfred Manyonge Wanyama

Department of Pure and Applied Mathematics,

Maseno University.

Signature Date

Professor. Jacob K. Bitok

Department of Mathematics and Computer Science,

University of Eldoret.

ii



ACKNOWLEDGEMENT

From the bottom of my heart, I would like to say big thank you to my supervisors Professor

Manyonge Alfred Wanyama and Professor Bitok K. Jacob for their dedicated support and guidance.

They continuously provided encouragement and were always willing and enthusiastic to assist in

any way they could throughout the research. I would like to also thank: Dr. Isaac Owino, Chair,

Department of Pure and Applied Mathematics. Dr. Edgar Otumba, Chair, School of Post Graduate

Committee (School of Mathematics, Statistics and Actuarial Science). The entire fraternity of the

Department of Pure and Applied Mathematics at Maseno University. Thank you very much for

your energy, understanding and help throughout my study. Finally, I cannot forget to thank my

wife, children, family members, friends and Mukhuyu Friends Church-Webuye members for their

patience and encouragement. Thank you for all the unconditional support in this very intense

academic work.

iii



DEDICATION

First of all, I dedicate this dissertation to God Almighty my creator, my strong pillar, my source

of inspiration, wisdom, knowledge and understanding. He has been the source of my strength

throughout this program and on His wings only have I soared. I also dedicate this work to my

dear wife, Gaudencia Khalayi, who has encouraged me all the way and whose encouragement

has made sure that I give it all it takes to finish that which I have started. Finally to my beloved

daughters: Lindsay Khwaka Kweyu, Melinda Lukelesia Kweyu and Diana Namwali Kweyu who

have been affected in every way possible by this quest. Thank you. My love for you all can never

be quantified. God bless you.

iv



ABSTRACT
Velocity profile and temperature distribution for Magnetohydrodynamic (MHD) flow in a straight
horizontal pipe of elliptical cross section has been investigated. Many researchers have carried
out research on pipes of circular, square, rectangular, annular and elliptical cross sections in
magnetohydrodynamics because there are many applications. Their studies concentrated on
a given cross section as a different entity with fluid being driven by pumps. In this study,
investigation is done on a circular pipe as it changes into an elliptical pipe when fluid is propelled
by gravitational force. The main purpose of the study is to find out which pipe between one
which has a circular cross section and another of elliptical cross section is more beneficial. Effects
of velocity profile and temperature distribution on the pipe as it changes cross section from
circular to elliptical are investigated. Governing equations, partial differential equations (pdes),
are formulated, non dimensionalised, expressed in terms of stream function and transformed
into ordinary differential equations (odes) using similarity transformation. The odes are solved
by Finite Element Method in conjunction with Mathematica version 12.0. The objectives of
the study are: To model Finite Element Method solution for steady Magnetohydrodynamic
flow in a straight horizontal pipe of elliptical cross section. To formulate governing equations
(pdes) in cylindrical coordinates (r,θ , z) comprising Navier-Stokes equations, Ohm’s law of
electromagnetism, equation of continuity, cross section of elliptical pipe and heat energy equation.
To solve by Finite Element Method the ordinary differential equations (odes) formed when non
dimensionalisation and similarity transformation are carried out on the governing equations. To
determine the effects of dimensionless numbers of Hartmann number, Reynolds number, Eckert
number and Prandtl number as well as other physical quantities of gravitational force and aspect
ratio on fluid velocity and temperature. To find out the repercussions of velocity and temperature
on a pipe as it transits from circular to elliptical cross section. Finite Element Method (FEM)
is embraced instead of other methods like Finite Difference Method (FDM) because FEM is
able to handle complicated geometries and boundaries with relative ease while other methods
are restricted to handle rectangular shapes. Also many of the real life medical, engineering,
astrophysics, etc problems can be solved in weak form, which FEM encompasses compared to
strong form, which other methods employ. Results are displayed as tables and graphs and reveal
that: Increase in Hartmann number, 1.0≤ Ha≤ 40.0, increases temperature but retards velocity.
Rise in Reynolds number, 0.5 ≤ Re ≤ 8.0 and aspect ratio, 1 ≤ α ≤ 1.6, leads to rise in both
velocity and temperature. An upsurge in gravitational force, 0.00002 ≤ λθ ≤ 0.00008, results
in an upsurge in velocity. Temperature increases when Eckert number, 1≤ Ec≤ 40 , increases
but decreases when Prandtl number, 0.5 ≤ Pr ≤ 2.0, is raised. In all scenarios, velocity and
temperature are maximum at the centre of pipe but diminish to zero at the periphery. Spike in
aspect ratio leads to rise in velocity which results in increase in temperature. A pipe of elliptical
cross section will be more convenient where there is limited space in the vertical direction due
to existing structures yet there is demand in increase in productivity. This is in comparison to
circular shape. A pipe of elliptical cross section has greater capacity for the same depth of flow.
It is envisaged that the conducting fluid is flowing as a coolant at a nuclear power plant or as
molten metal at a metallurgical process. A pipe of elliptical cross section would therefore be
more productive in industrial processes than one which is circular according to the findings of this
dissertation.
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CHAPTER ONE

INTRODUCTION

1.1 Background information

The word Magnetohydrodynamics comprises three words: Magneto- meaning magnetic, hydro-

meaning liquid and dynamics-referring to movement of an object by forces. MHD is therefore

a union of three widely separated disciplines namely electrodynamics, fluid dynamics and ther-

modynamics. MHD is concerned with the phenomena that arise in fluid dynamics from the

interaction of an electrically conducting fluid with the magnetic field. The conducting fluids

include plasmas (ionized gases), liquid metals ( mercury, gallium, sodium, molten iron) and

electrolytes. Practical MHD devices have been in use since the early part of the 20th century,

Alam and Khan [1]. MHD generators are used in power plants. The basic concept of the MHD

generator is to generate electrical energy from the motion of conductive fluid that is crossing

a perpendicular magnetic field. When the conducting fluid moves through the magnetic field,

it creates an electric current perpendicular to the magnetic field and direction of movement of

conducting fluid. Another application of MHD is in MHD pumps and flow meters. In these type

of pumps, the electrical energy is converted directly to a force which is applied on the conducting

fluid. In MHD flowmeters, the potential induced by fluid motion is measured and used to infer

(accurately predict) the average flow rate. The MHD pumps use this force to control liquid metal

flows where high temperatures and corrosive tendencies prohibit the use of seals in standard

mechanical pumps. Electromagnetic forces are used to pump liquid metals (eg. in cooling systems

of nuclear power stations) without the need for any moving parts. They can shape the flow of a

molten metal and so aid controlling its shape once solidified and can even levitate (to rise or float

as if in the air especially in seeming defiance of gravitation) and heat a sample of metal to prevent

1



any contact with a container.

Many researchers are interested in Magnetohydrodynamics (MHD) due to the fact that

magnetism is found throughout the universe and has many applications. Studies on MHD range

from research on generation of both solar and earth’s magnetic fields to medical and industrial

use. Investigations are on-going to copy the sun. In copying the sun, researchers are trying to

fuse hydrogen into helium, Kramer [2]. This will result in release of huge quantities of energy

for both domestic and industrial use. In cancer treatment, research is going on to develop more

precise methods of delivery of medicine to affected areas. One such method involves the binding

of medicine to biologically compatible magnetic particles (e.g ferrofluids). These particles are

guided to the target via careful placements of permanent magnets on the external body. MHD

equations and Finite Element Method are used to study interaction between the magnetic fluid

particles in the blood stream and the external magnetic field, Saman et. al [3].

Many researchers have investigated on MHD flows in pipes and ducts of circular, square,

sector, ellipse etc as different entities. In this study, research is carried out on a circular pipe as it

changes into an elliptical pipe. The fluid is moved by gravitational force which is economically

cheaper in comparison to the work done by other researchers where they used pumps to provide

suction or injection force. The similarity transformations used are also unique from those of other

investigators and convert the non-linear pdes directly to linear odes which are easier to solve. The

main aspiration of the research is to find out the impact of change in cross section from circular to

elliptical and increase in gravitational force on velocity and temperature of fluid.
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1.2 Statement of the problem

Analytical and/or numerical solutions have been obtained for MHD flow between two parallel

plates, a pipe whose cross section is a sector and through pipes or ducts whose cross section are:

circular, square, triangular, rectangular and annular. Many industries use circular pipes to obtain

MHD products. With human population increasing, there is need to increase these products. One

way being use of a pipe of elliptical cross section instead of a circular one. A pipe of elliptical

cross section has greater volume and torque in comparison with a circular one of the same depth.

Furthermore, in this investigation, the fluid is driven by gravitational force only instead of pumps .

This reduces costs further.

The main aspiration of this research is to find out which one between the two cross sections is

more effective. Modeling for velocity profile and temperature distribution is done for a circular

pipe as it changes to an elliptical pipe when fluid is propelled by gravitational force. This is

executed by formulating governing equations (pdes), converting them into ordinary differential

equations (odes), solving odes by FEM and Mathematica version 12.0 to obtain results in form of

tables and graphs. The results are analysed to find out which cross section is more beneficial.

1.3 Objectives of the study

1.3.1 General objective

To model Finite Element Method solution for steady Magnetohydrodynamic flow in a straight

horizontal pipe of elliptical cross section.
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1.3.2 Specific objectives

i. To formulate governing equations (pdes) in cylindrical coordinates (r,θ , z) comprising

Navier-Stokes equations, Ohm’s law of electromagnetism, equation of continuity, cross

section of elliptical pipe and heat energy equation.

ii. To solve by Finite Element Method the ordinary differential equations (odes) formed when

non dimensionalisation and similarity transformation are carried out on the governing

equations.

iii. To determine the effects of dimensionless numbers of Hartmann number, Reynolds number,

Eckert number and Prandtl number as well as other physical quantities of gravitational force

and aspect ratio on fluid velocity and temperature.

iv. To find out the repercussions of velocity and temperature on a pipe as it transits from

circular to elliptical cross section.

1.4 Significance of the study

Magnetohydrodynamics has many applications ranging from technological applications like

medicine, energy generation, processing of materials, energy storage and flow measure to natural

phenomena like astrophysics, planetary physics and geophysics, Cuevas [4]. Many establishments

use circular pipes to obtain MHD products. With the ever increasing demand for these products

due to population growth, there is need to replace the circular pipe with a pipe of elliptical cross

section. A pipe of elliptical cross section will be very appropriate in MHD processes where

vertical clearance is limited by existing structures yet there is demand in increase in productivity.

A horizontal pipe of this type is particularly suitable since the vertical height is less than the
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height of hydraulically equivalent circular pipe. A pipe of elliptical cross section also offers the

hydraulic advantage of greater capacity for the same depth of flow than circular pipe. The velocity

profile and temperature distribution will be higher in elliptical pipe than circular one. Again in

this model, the fluid is driven by gravitational force which is cheaper economically in comparison

to other models being used which require pumps to provide injection or suction force. All these

will in turn result in increase in productivity in MHD products.

1.5 Research methodology

MHD encompasses three disciplines namely: Electrodynamics, phenomena associated with

electric charges and their interaction with magnetic and electric fields, Ohm’s law of electromag-

netism caters for this field. Secondly, fluid dynamics, which describes fluid flow, is represented

by Navier-Stokes equations. Heat energy equation, act for thermodynamics, which is the relation

between heat and other forms of energy. Navier-Stokes equation is non linear pde. Heat energy

equation also becomes non linear pde when stream function is introduced. Non-linearity make it

difficult or impossible to solve these pdes. This necessitates consideration of some assumptions.

Formulation of governing equations is done in terms of cylindrical coordinates rather than

Cartesian coordinates. Cylindrical coordinates are useful, Graebel [5], for geometries that involve

circular cylinders, ellipses, spheres, or ellipsoids. Cylindrical coordinates make satisfaction of

boundary conditions easiest and are useful in connection with phenomena that have rotational

symmetry about longitudinal axis such as fluid flow in a pipe of round cross section, heat distri-

bution in a cylinder etc. However, mathematical functions formed, their length and complexity

of equations become more complicated than in Cartesian coordinates. Cylindrical coordinates

are utilized in this investigation because geometry involved is elliptical, boundary conditions are
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easily satisfied and rotational symmetry is involved.

Similarity transformation approach is employed to transform non linear pdes to linear odes.

Non-dimensionalization is done to reduce the number of parameters involved in the equations

and results in dimensionless numbers like Reynolds and Prandtl. These numbers enable the

grouping of a large number of experiments so that results are provided conveniently using

dimensionless numbers.

FEM is chosen to solve the odes numerically instead of other methods like Finite Difference

Method (FDM) because of the following advantages, Darrell and Juon [6]:

i. FEM works with weak form of differential equations while other methods work with strong

form of differential equations. Many of the real life medical, engineering, astrophysics, etc

problems can be solved in weak form compared to strong form.

ii. Modeling of complex geometries and irregular shapes are easier as a variety of finite

elements are available for discretization of the domain.

iii. Boundary conditions can be easily incorporated in FEM.

iv. Different types of material properties can be easily accommodated in modeling from

element to element or even within an element.

However, FEM also has disadvantages which are:

a. Large amounts of data is required as input for the mesh used in terms of nodal connectivity

and other parameters.

b. It requires large computer memory and computational time to get results.

c. It requires longer execution time.
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d. Output result will vary considerably.

FEM is selected for this investigation because it is concerned with weak form of differential

equations and boundary conditions are easily incorporated.

Mathematica version 12.0 is embraced for solution of numerous algebraic equations, integra-

tion, differentiation, simplification and construction of graphs.
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CHAPTER TWO

LITERATURE REVIEW

The first theoretical and laboratory studies of MHD flow in pipes and ducts were carried out in

the 1930s by Williams, Al-Khawaja and Selmi [7]. They published results of experiments with

electrolytes flowing in insulated tubes. The tubes were placed between the poles of a magnet. The

potential difference across the flow was measured using wires passed through the walls.

Moffatt [8] researched on a liquid metal placed in a closed container placed in a magnetic

field. The field was caused to rotate by suitably phased external current circuits. A rotational

Lorentz force was produced and drove the rotational flow. He found out that: In the weak field

limit, the rotational part of Lorentz force was steady. In the high frequency limit, flow with

circular streamlines was possible when the Hartmann number was not too large. For a pipe of

elliptical cross section, of large aspect ratio a
b , the torque distribution associated with the Lorentz

force was concentrated near the points of maximum curvature on the boundary. Where a and b

were half lengths of major and minor axes of the ellipse respectively.

The transient MHD flow of a particulate suspension in an electrically conducting fluid in a

circular pipe was studied considering the Hall effect by Attia [9]. The governing partial differential

equations were solved numerically using Finite Difference Method. The effect of the magnetic

field parameter, the Hall parameter and the particle-phase viscosity on the transient behavior of

the velocity, volumetric flow rates and skin friction coefficients of both fluid and particle-phases

were investigated. He observed that: increasing the magnetic field decreases the fluid and particle

velocities, increasing the Hall parameter increases fluid-phase volumetric flow rate and fluid-phase

skin friction coefficient for all values of magnetic field parameter and particle-phase viscosity.

The effect of the Hall parameter on the quantities fluid-phase volumetric flow rate and fluid-phase

skin friction coefficient becomes more pronounced for higher values of magnetic field parameter
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or smaller values of particle-phase viscosity.

Gedik et.al [10] studied the steady, laminar, incompressible viscous flow of an electrically

conducting liquid-metal fluid in a circular non-conducting pipe numerically. The galistan liquid-

metal was subjected to constant pressure gradient a long the axial direction and uniform transverse

magnetic field in the spanwise direction. Magnetic field induction took values between 0 and

1.5T with a 0.5T step size. They found that velocity decreased with an increase in the intensity of

applied magnetic field.

İbrahim [11] applied Chebyshev polynomial method to solve magnetohydrodynamic flow

equations in a rectangular duct in the presence of transverse external oblique magnetic field.

Truncated Chebyshev series was considered the approximate solution. The MHD equations were

decoupled first and then the Chebyshev polynomial method was used to solve for positive and

negative Hartmann numbers. Numerical solutions of velocity and induced magnetic field were

obtained for steady-state, fully developed, incompressible flow for a conducting fluid inside the

duct. The results for velocity and induced magnetic field were visualized in terms of graphics for

values of Hartmann numbers, Ha≤ 1000. He observed that the method was capable of producing

highly accurate solutions using small number of algebraic system of equations leading to less

computational effort.

Altintas and Ozkol [12] analyzed Computational Fluid Dynamics (CFD) of external magnetic

field effect on the steady, laminar, incompressible flow of an electrically conducting liquid metal

fluid in a pipe. They used the MHD module of ANSYS fluent commercial programme to compute

the flow and temperature fields. Sodium potassium alloy which is a liquid at room temperature

was used as a conducting fluid. The simulations were performed for non-heated pipe flow and

externally heated pipe flow. They observed that heating reduced magnetic effect on flow.

Verma [13] studied flow of viscous, incompressible, electrically conducting fluid with varying
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viscocity through an annular pipe in the presence of a radial magnetic field. He obtained exact

solutions for velocity, rate of volume flow and stress on the wall of the channel. In limiting case,

the solutions reduced to the classical case flow when viscocity was constant and magnetic field

was zero. Results obtained were exhibited graphically and revealed that: For a fixed integer

of a hypergometric function, increase in non dimensional viscosity variation parameter causes

increase in velocity. Velocity profiles are almost symmetrical when viscosity is constant and

profiles get more and more asymmetric with position of maximum velocity shifting towards outer

cylinder as non dimensional viscosity variation parameter increases. The effect of increase in

magnetic parameter was to flatten the velocity profile. Stress on the outer cylinder decreases as

non dimensional viscosity variation parameter increases. Stress on the inner cylinder increases

with non dimensional viscosity variation parameter for a small fixed integer of a hypergometric

function due to increase in viscosity.

The case of an analytical solution for convective heat transfer in straight elliptical pipes was

presented by Shahmardan et.al [14]. The solution was obtained by using finite series expansion

method for fully developed heat transfer under the constant heat flux at walls. The variations of

Nusselt number as well as the temperature at the centre of cross section were expressed in terms

of aspect ratio. The solution indicated that the Nusselt number increased when the geometry of

cross section changed from circular to elliptical shape from 48/11 to 4356/833 for large enough

aspect ratios.

Numerical solution for steady MHD flow of liquid metal through a square duct under the

action of strong transverse magnetic field was investigated by Dipjyoti et.al [15]. The walls

of the duct were considered to be electrically insulated as well as isothermal. The numerical

solutions for velocity and temperature distributions were obtained by Finite Difference Method.

The solutions for different values of Hartmann number and Prandtl were analyzed and presented
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graphically. They found out that increase of Hartmann number leads to temperature increase.

Increase in Prandtl numbers result in increase in temperature of the flow.

Usman et.al [16] investigated the analytical solution of the temperature profile distribution of

a one-dimensional fluid under the influence of magnetic fluid strength of a reactive hydromagnetic

fluid flow through porous media between permeable beds under optically thick limit radiation.

The fluid considered was incompressible, electrically conducting and flowed steadily through

porous media with the effect of magnetic strength. The analytical solutions of the non-linear

dimensionless energy equations governing the fluid flow were obtained using integration and

series solution of Adomian Decomposition Method (ADM) and the effects of flow properties on

the fluid flow were presented graphically and discussed. Their results showed that an increase in

the viscous dissipation increases the temperature profile of the fluid flow under optically thick

limit radiation. An increase in the Reynold number also increases the temperature of the fluid. An

increase in the internal heat generation increases the temperature of the fluid flow. As the thermal

radiation and Hartmann number decreases, the temperature of the fluid flow increases due to the

effect of the magnetic field strength.

A Finite Difference Method solution for coupled convection diffusion equations of magne-

tohydrodynamic flow was obtained by Prasanna and Ganesh [17]. They presented solutions for

ducts of different cross sections namely square, rectangle, triangle, circle, ellipse, sector and

annulus under steady state conditions. Walls of ducts were electrically insulated and Hartmann

number fixed. It was observed from the graphs plotted that for all the cross sections, the velocity

profile was flat in the core region.

A numerical study was carried out to examine the magnetohydrodynamic (MHD) flow

of micropolar fluid on a shrinking surface in the presence of both Joule heating and viscous

dissipation effects by Liaquat et.al [18]. The governing system of non-linear odes were obtained
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from the system of pdes by employing exponential transformations. The resultant equations

were transformed into initial value problems and solved by Runge-Kutta method. The effects of

different parameters on velocity, angular velocity, temperature profiles, skin friction coefficient

and Nusselt number were obtained and demonstrated by constructed graphs. They observed that

the temperature of fluid rose at higher values of the Eckert number in all solutions.

In their study, Mohammad et.al [19] considered a laminar magnetohydrodynamics (MHD)

developing flow of an incompressible electrically conducting fluid subjected to an external

magnetic field . The aim of the study was to propose a correlation for computing the development

length of the laminar MHD developing flow in a pipe. A numerical approach was considered to

solve the problem. In the first step, the numerical Finite Volume Method (FVM) was conducted

to analyze the problem. Later, the Artificial Neural Network (ANN) was used to develop the data

sets and in the last step, the curve fitting was applied to find a correlation for the prediction of the

development length as a function of the Reynolds and Hartmann numbers. They observed that the

development length declines with the increase of the Hartmann number and grows with the rising

of the Reynolds number.

The flow of an electrically conducting fluid through a curved channel with wavy boundaries

was studied by Okechi et.al [20]. The waviness of the curved boundaries was sinusoidal and

periodic. The analytical results for the velocity field and the volumetric flow rate were obtained

using the boundary perturbation method. The effects of the wavy boundaries, the channel radius

of curvature and the applied magnetic field on the flow field were analyzed. They observed that

the impact of the wavy boundaries on the flow decreases with the increase in Hartmann number.

However, the flow rate increases for any alignment of the wavy curved boundaries and for the

wave numbers less than a threshold wavenumber (depending on the radius of curvature and the

Hartmann number). Also, the flow rate decreases with the increasing wavenumber.
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In the investigation done by Moffatt [8], the torque distribution associated with Lorentz force

was concentrated near the points of maximum curvature on the boundary. When comparison is

made between a circular and an elliptical pipe, the elliptical pipe provides higher torque. In the

findings of Shahmardan et.al [14], Nusselt number increased when the geometry of the cross

section changed from circular to elliptical. They did not research on velocity and temperature as

the shape changed. Prasanna and Ganesh [17] observed that velocity profile was flat in the core

region of pipes of various cross sections. However, they did not compare the velocities for the

different shapes of cross section.

The main intention of this research is to examine the effects of change in cross section of pipe

from circular to elliptical and change in gravitational force on velocity profile and temperature

distribution. This will enable us to find out which cross section of pipe between circular and

elliptical is more productive. Governing equations (pdes) are formulated, non-dimensionalised,

converted into odes by use of similarity transformation technique. The odes are solved numerically

by Finite Element Method. Results are obtained and presented in form of tables and graphs by

manipulation of Mathematica version 12.0. Conclusions are drawn relating velocity profile and

temperature distribution with Hartmann number, gravitational force, Reynolds number, Prandtl

number, Eckert number and distance of major axis of cross section of elliptical pipe (aspect ratio).
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CHAPTER THREE

FORMULATION AND NUMERICAL SOLUTION

The equations which describe MHD flow are a combination of: Ohm’s law of electromagnetism.

θ - component of Navier-Stokes equations of fluid mechanics. Equation of continuity. Heat energy

equation. Elliptical cross section of pipe and boundary conditions. Where θ is the component of

cylindrical coordinates.

3.1 The Physical Problem

Consideration is made for MHD flow in a straight horizontal pipe of sufficient length and of

elliptical cross-section as shown in figure 3.1.1.

Figure 3.1.1: Flow of fluid in pipe of elliptical cross section

The fluid flows through the pipe due to an applied constant pressure gradient in the z direction.

The pressure arises from Lorentz force and gravitational force. Lorentz force is the force exerted

on the charged fluid particles moving with some velocity through an electric and magnetic field.

The fluid is viscous, incompressible and electrically conducting. The electrical permittivity

and magnetic permeability of the fluid are assumed to be close to those of the external space.

Permitivity quantifies the extent to which a material concentrates electric flux. Electric flux will
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be the same for the fluid, pipe and the surrounding. Otherwise, concentration of electric flux

will be different in the three media. Magnetic permeability is the measure of magnetisation that

a material obtains in responds to applied magnetic field. This measure is different for fluid, air

and pipe. Different electrical permittivity and magnetic permeability in the three media calls for

a different formulation. Externally applied magnetic field with an intensity B is parallel to the

y-direction. In defining this investigation, the domain, Ω, is the elliptical cross section of the pipe.

The boundary, Γ, is the inside of the cross section of the pipe.

3.2 Assumptions

The following assumptions are made :

i. The walls of the pipe and the outside media are also electrically conducting having the same

electrical conductivity and magnetic permeability since the thickness of the pipe wall is

assumed to be very small.

ii. Directed magnetic field is applied on the pipe parallel to the y-axis and perpendicular to the

z-axis.

For θ -component of velocity, magnetic field varies in the direction r but zero in θ and z,

the directed magnetic field is :

B = {Br,0,0} (3.2.1)

θ is the cylindrical coordinate.

For r -component of velocity, directed magnetic field varies in θ direction but zero in r and
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z directions, the directed magnetic field is

B = {0,Bθ ,0} (3.2.2)

For temperature, it varies in the direction r and θ but is zero in z direction, the magnetic

field is :

B = {Br,Bθ ,0} (3.2.3)

where Br and Bθ are the r and θ components of incident magnetic field B respectively.

iii. Velocity of fluid, u, vary in the directions θ and r but zero in z for Navier-Stokes equations.

Velocity is then:

u = {ur, uθ , 0} (3.2.4)

where ur and uθ are components of fluid velocity, u, in r and θ directions respectively.

iv. Lorentz force in the θ -component, fθ , is obtained from

Jv×B

where Jv is electric current density for velocity profile. Jv is worked out in cylindrical

coordinates (ρ̂r, ρ̂θ , ρ̂z) as follows: From Ohm’s law of electromagnetism (Jv = σ(E+

u×B)) when E = 0 (when E 6= 0, a different formulation is required) and using equation
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(3.2.1) and equation (3.2.4)

Jv = σ(u×B) = σ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂r ρ̂θ ρ̂z

ur uθ 0

Br 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= �σBruθ ρ̂z

so that

Jv×B =

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂r ρ̂θ ρ̂z

0 0 �σBruθ

Br 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= σB2

ruθ ρ̂θ

Lorentz force become

fθ = σB2
ruθ (3.2.5)

where σ is electrical conductivity.

v. Lorentz force in the r -component, fr, is obtained from

Jv×B

Using equations (3.2.2) and equation (3.2.4)

Jv = σ(u×B) = σ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂r ρ̂θ ρ̂z

ur uθ 0

0 Bθ 0

∣∣∣∣∣∣∣∣∣∣∣∣
= σBθurρ̂z
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so that

Jv×B =

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂r ρ̂θ ρ̂z

0 0 σBθur

0 Bθ 0

∣∣∣∣∣∣∣∣∣∣∣∣
= �σB2

θurρ̂r

Lorentz force become

fr = �σB2
θur (3.2.6)

vi. Thermodynamic temperature of fluid vary in the directions θ and r but is zero in z. Temper-

ature, simply, is then:

T = {Tr, Tθ , 0} (3.2.7)

where Tr and Tθ are fluid temperatures in r and θ directions respectively.

vii. The electric current density, Jt, for temperature is obtained as follows, when worked out

in cylindrical coordinates, (ρ̂r, ρ̂θ , ρ̂z); From Ohm’s law of electromagnetism, equation

(3.3.5),

Jt = σ (E+u×B)

when E = 0, it is considered that the electric force created by E is much much smaller than

Lorentz force created by magnetic field B. Otherwise a different formulation is required.

Using equations (3.2.3) and (3.2.4)

Jt = σ(u×B) = σ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ̂r ρ̂θ ρ̂z

ur uθ 0

Br Bθ 0

∣∣∣∣∣∣∣∣∣∣∣∣
= σ (Bθur �Bruθ ) ρ̂z
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so that

J 2
t = (σ)2 (Bθur �Bruθ )

2 (3.2.8)

viii. The flow is steady i.e the velocity of the fluid at a particular fixed point does not change

with time. This means that time is not considered in this study.

ix. There is no viscous dissipation of energy i.e there is no conversion of kinetic energy into

internal energy by work done against the viscous stresses which would increase the initial

temperature of the fluid. The research considered the original initial fluid temperature.

x. The Hall effect is negligible. Hall effect tends to accelerate fluid velocity. The study took

into account initial fluid velocity.

xi. There are gravitational forces, ρg while pressure fields p are negligible, where g and ρ are

gravitational field strength and density of fluid respectively. This is because modeling is to

be done with fluid being driven by gravitational force only

3.3 Governing Equations

The governing equations are:

3.3.1 Elliptical cross section of pipe

Taking into account a pipe of elliptical cross section, the centre will be at the origin. The length r

is measured from the ellipse’s centre and depends on the central angle θ as shown in figure 3.3.1.

θ is measured in the anticlockwise direction in radians. Length r is given by

r2 =
a2b2

a2 sin2θ +b2 cos2θ
(3.3.1)
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where a and b are half of the ellipse’s major and minor axes respectively. The fluid will flow in

the z-direction.

Figure 3.3.1: Elliptical cross section of pipe

3.3.2 Equation of continuity

From assumption (iii), in cylindrical coordinates (r,θ , z), the equation of continuity for an

incompressible fluid is given by

1

r

∂

∂ r
(rur)+

1

r

∂

∂θ
(uθ ) = 0 (3.3.2)

Where ur and uθ are components of fluid velocity, u, in r and θ directions respectively.

3.3.3 Navier-Stokes equations

From assumptions (iii), (viii) and (xi), Navier-Stokes equations of motion for an incompressible

fluid are given in cylindrical coordinates (r,θ , z) for the θ and r -components as:

θ -component

ρ

(
ur

∂uθ

∂ r
+
uθ

r

∂uθ

∂θ
+
uθur
r

)
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= µ

[
1

r

∂

∂ r

(
r
∂uθ

∂ r

)
+

1

r2
∂ 2uθ

∂θ2
+

2

r2
∂ur
∂θ

�
uθ

r2

]
+fθ +ρgθ (3.3.3)

and r-component:

ρ

(
ur

∂ur
∂ r

+
uθ

r

∂ur
∂θ

�
u2

θ

r

)

= µ

[
1

r

∂

∂ r

(
r
∂ur
∂ r

)
+

1

r2
∂ 2ur
∂θ2

�
ur

r
2
�
2

r2
∂uθ

∂θ

]
+fr+ρgr (3.3.4)

respectively.

3.3.4 Ohm’s law of electromagnetism

Ohm’s law asserts that the total electric current flowing in a conductor is proportional to the

total electric field. In addition to the field E acting on a fluid at rest, a fluid moving with velocity

u in the presence of a magnetic field B acquires an additional electric field u×B. Ohm’s law then

becomes

J = σ(E+u×B) (3.3.5)

where σ is electrical conductivity

3.3.5 Heat energy equation

When assumptions (vi) and (ix) are considered, heat energy equation is written in cylindrical

coordinates as

1

ρcp

(
k

r

∂T

∂ r
+k

∂ 2T

∂ r2
+

k

r2
∂ 2T

∂θ2
+

J 2
t

σ

)
= 0 (3.3.6)

Where cp is specific heat capacity of fluid and k is thermal conductivity of fluid.
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3.4 Non-dimensionalisation

Non-dimensionalisation, Josef [21], is done to simplify equations by reducing the number of

variables used. The technique introduces dimensionless quantities like Hartmann number and

Prandtl number whose magnitude influence temperature and velocity distributions differently.

3.4.1 Non-dimensionalisation of Navier-Stokes equations

To non-dimensionalise Navier-Stokes equations (3.3.3) and (3.3.4), the following non-dimensional

parameters are used: r = r?R, θ = θ ?, ur = u?rU0, uθ = u?
θ
U0, kinematic viscosity: ν = µ

ρ
,

Reynolds number: Re = RU0

ν
, Hartmann number: Ha =BR

(
σ

µ

) 1
2 and Stuart number (interaction

parameter): N= σB2R
ρU0

= Ha2

Re , where U0 and R are characteristic velocity scale and characteristic

length from the centre of ellipse respectively. Quantities with superscript stars are dimensionless

quantities. For equation (3.3.3);

ur
∂uθ

∂ r
= u?rU0

(
∂uθ

∂u?
θ

∂ r?

∂ r

∂u?
θ

∂ r?

)
=

U2
0

R
u?r

∂u?
θ

∂ r?

uθ

r

∂uθ

∂θ
=

u?
θ
U0

r?R

(
∂uθ

∂u?
θ

∂θ ?

∂θ

∂u?
θ

∂θ ?

)
=

U2
0

R

u?
θ

r?
∂u?

θ

∂θ ?

uθur
r

=
uθ?U0u

?
rU0

r?R
=

U2
0

R

u?
θ
u?r
r?

1

r

∂uθ

∂ r
=

1

r?R

(
∂uθ

∂u?
θ

∂ r?

∂ r

∂u?
θ

∂ r?

)
=

U0

R2

1

r?
∂u?

θ

∂ r?

∂ 2uθ

∂ r2
=

∂

∂ r?

(
∂uθ

∂ r

)
∂ r?

∂ r
=

U0

R2

∂ 2u?
θ

∂ r?2

1

r2
∂ 2uθ

∂θ2
=

1

r?2R2

∂

∂θ ?

(
∂uθ

∂u?
θ

∂θ ?

∂θ

∂u?
θ

∂θ ?

)
∂θ ?

∂θ
=

U0

R2r?2
∂ 2u?

θ

∂θ ?2
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2

r2
∂ur
∂θ

=
2

r?2R2

(
∂ur
∂u?r

∂θ ?

∂θ

∂u?r
∂θ ?

)
=

2U0

R2r?2
∂u?r
∂θ ?

uθ

r2
=

U0

R2

u?
θ

r?2

Substituting the terms above and equation (3.2.5) in equation (3.3.3), it becomes

ρ

(
U2
0

R
u?r

∂u?
θ

∂ r?
+
U2
0

R

u?
θ

r?
∂u?

θ

∂θ ?
+
U2
0

R

u?
θ
u?r
r?

)
=

µ

[
U0

R2

1

r?
∂u?

θ

∂ r?
+
U0

R2

∂ 2u?
θ

∂ r?2
+

U0

R2r?2
∂ 2u?

θ

∂θ ?2
+

2U0

R2r?2
∂u?r
∂θ ?

�
U0

R2

u?
θ

r?2

]
+σB2U0u

?
θ +ρgθ

ρ
U2
0

R

(
u?r

∂u?
θ

∂ r?
+
u?

θ

r?
∂u?

θ

∂θ ?
+
u?

θ
u?r
r?

)
=

µ
U0

R2

[
1

r?
∂u?

θ

∂ r?
+

∂ 2u?
θ

∂ r?2
+

1

r?2
∂ 2u?

θ

∂θ ?2
+

2

r?2
∂u?r
∂θ ?

�
u?

θ

r?2

]
+σB2U0u

?
θ +ρgθ

Multiplying both sides of the above expression by R
U2
0ρ

, gives

u?r
∂u?

θ

∂ r?
+
u?

θ

r?
∂u?

θ

∂θ ?
+
u?

θ
u?r
r?

=

ν

RU0

[
1

r?
∂u?

θ

∂ r?
+

∂ 2u?
θ

∂ r?2
+

1

r?2
∂ 2u?

θ

∂θ ?2
+

2

r?2
∂u?r
∂θ ?

�
u?

θ

r?2

]
+

σB2R

U0ρ
u?θ +

R

U2
0

gθ

Upon introducing Reynolds and Stuart numbers in the above expression leads to

u?r
∂u?

θ

∂ r?
+
u?

θ

r?
∂u?

θ

∂θ ?
+
u?

θ
u?r
r?

=

1

Re

[
1

r?
∂u?

θ

∂ r?
+

∂ 2u?
θ

∂ r?2
+

1

r?2
∂ 2u?

θ

∂θ ?2
+

2

r?2
∂u?r
∂θ ?

�
u?

θ

r?2

]
+Nu?θ +

R

U2
0

gθ
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Neglecting ?’s and letting R
U2
0

gθ = γθ , gravitational force in the θ� component

ur
∂uθ

∂ r
+
uθ

r

∂uθ

∂θ
+
uθur
r

=

1

Re

[
1

r

∂uθ

∂ r
+

∂ 2uθ

∂ r2
+

1

r2
∂ 2uθ

∂θ2
+

2

r2
∂ur
∂θ

�
uθ

r2

]
+Nuθ + γθ (3.4.1)

Repeating process for equation (3.3.4);

ur
∂ur
∂ r

= u?rU0

(
∂ur
∂u?r

∂ r?

∂ r

∂u?r
∂ r?

)
=

U2
0

R
u?r

∂u?r
∂ r?

uθ

r

∂ur
∂θ

=
u?

θ
U0

r?R

(
∂ur
∂u?r

∂θ ?

∂θ

∂u?r
∂θ ?

)
=

U2
0

R

u?
θ

r?
∂u?r
∂θ ?

u2
θ

r
=

u?2
θ
U2
0

r?R

1

r

∂ur
∂ r

=
1

r?R

(
∂ur
∂u?r

∂ r?

∂ r

∂u?r
∂ r?

)
=

U0

R2

1

r?
∂u?r
∂ r?

∂ 2ur
∂ r2

=
∂

∂ r?

(
∂ur
∂u?r

∂ r?

∂ r

∂u?r
∂ r?

)
∂ r?

∂ r
=

U0

R2

∂ 2u?r
∂ r?2

1

r2
∂ 2ur
∂θ2

=
1

r?2R2

∂

∂θ ?

(
∂ur
∂u?r

∂θ ?

∂θ

∂u?r
∂θ ?

)
∂θ ?

∂θ
=

U0

R2r?2
∂ 2u?r
∂θ ?2

ur
r2

=
U0

R2

u?r
r?2

2

r2
∂uθ

∂θ
=

2

r?2R2

(
∂uθ

∂u?
θ

∂θ ?

∂θ

∂u?
θ

∂θ ?

)
=

2U0

R2r?2
∂u?

θ

∂θ ?

Substituting the terms above and equation (3.2.6) in equation (3.3.4), it delivers

ρ

(
U2
0

R
u?r

∂u?r
∂ r?

+
U2
0

R

u?
θ

r?
∂u?r
∂θ ?

�
U2
0

R

u?2
θ

r?

)
=

µ

[
U0

R2

1

r?
∂u?r
∂ r?

+
U0

R2

∂ 2u?r
∂ r?2

+
U0

R2r?2
∂ 2u?r
∂θ ?2

�
2U0

R2r?2
∂u?

θ

∂θ ?
�
U0

R2

u?r
r?2

]
�σB2U0u

?
r +ρgr
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Then,

ρ
U2
0

R

(
u?r

∂u?r
∂ r?

+
u?

θ

r?
∂u?r
∂θ ?

�
u?2

θ

r?

)
=

µ
U0

R2

[
1

r?
∂u?r
∂ r?

+
∂ 2u?r
∂ r?2

+
1

r?2
∂ 2u?r
∂θ ?2

�
2

r?2
∂u?

θ

∂θ ?
�
u?r
r?2

]
�σB2U0u

?
r +ρgr

Multiplying both sides of the above expression by R
U2
0ρ

, gives

u?r
∂u?r
∂ r?

+
u?

θ

r?
∂u?r
∂θ ?

�
u?2

θ

r?
=

ν

RU0

[
1

r?
∂u?r
∂ r?

+
∂ 2u?r
∂ r?2

+
1

r?2
∂ 2u?r
∂θ ?2

�
2

r?2
∂u?

θ

∂θ ?
�
u?r
r?2

]
�

σB2R

U0ρ
u?r +

R

U2
0

gr

Which shortens to

u?r
∂u?r
∂ r?

+
u?

θ

r?
∂u?r
∂θ ?

�
u?2

θ

r?
=

1

Re

[
1

r?
∂u?r
∂ r?

+
∂ 2u?r
∂ r?2

+
1

r?2
∂ 2u?r
∂θ ?2

�
2

r?2
∂u?

θ

∂θ ?
�
u?r
r?2

]
�Nu?r +

R

U2
0

gr

Neglecting ?’s and letting R
U2
0

gr = γr, gravitational force in the r� component

ur
∂ur
∂ r

+
uθ

r

∂ur
∂θ

�
u2

θ

r
=

1

Re

[
1

r

∂ur
∂ r

+
∂ 2ur
∂ r2

+
1

r2
∂ 2ur
∂θ2

�
2

r2
∂uθ

∂θ
�
ur
r2

]
�Nur+ γr (3.4.2)

3.4.2 Non-dimensionalisation of heat energy equation

To non-dimensionalise heat energy equation (3.3.6), the following non-dimensional parameters are

used, Josef [21]: r = r?R, θ = θ ?, ur=u?rU0, uθ =u?
θ
U0, T=T?(T0�T1)+T1, Prandtl number:

Pr =
µcp
k , Hartmann number: Ha = BR

(
σ

µ

) 1
2 , Eckert number: Ec = U2

0

cp(T0�T1)
, where U0 and

R are a characteristic velocity and a characteristic length from the centre of ellipse respectively
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. T0 and T1 are temperatures at the centre and periphery of pipe respectively. Quantities with

superscript star are dimensionless quantities. Then

∂T

∂ r
=

∂ r?

∂ r

∂T

∂T?

∂T?

∂ r?
=

(T0 �T1)

R

∂T?

∂ r?

∂ 2T

∂ r2
=

∂

∂ r?

(
∂T

∂ r

)
∂ r?

∂ r
=

(T0 �T1)

R2

∂ 2T?

∂ r?2

∂T

∂θ
=

∂θ ?

∂θ

∂T

∂T?

∂T?

∂θ ?
= (T0 �T1)

∂T?

∂θ ?

∂ 2T

∂θ2
=

∂

∂θ ?

(
∂T

∂θ

)
∂θ ?

∂θ
= (T0 �T1)

∂ 2T?

∂θ ?2

Putting these terms and equation (3.2.8) in equation (3.3.6), it converts to

k

ρcp

[
(T0 �T1)

r?R2

∂T?

∂ r?
+
(T0 �T1)

R2

∂ 2T?

∂ r?2
+
(T0 �T1)

(Rr?)2
∂ 2T?

∂θ ?2

]
+

σB2U2
0

ρcp
(u?r � u

?
θ )

2 = 0

so that

k(T0 �T1)

ρcpR
2

[
1

r?
∂T?

∂ r?
+

∂ 2T?

∂ r?2
+

1

r?2
∂ 2T?

∂θ ?2

]
+

σB2U2
0

ρcp
(u?r � u

?
θ )

2 = 0 (3.4.3)

Multiplying through equation (3.4.3) by ρR2

T0�T1
, it delivers

k

cp

[
1

r?
∂T?

∂ r?
+

∂ 2T?

∂ r?2
+

1

r?2
∂ 2T?

∂θ ?2

]
+

σB2U2
0R

2

cp(T0 �T1)
(u?r � u

?
θ )

2 = 0

Dividing through by dynamic viscosity µ gives

k

µcp

[
1

r?
∂T?

∂ r?
+

∂ 2T?

∂ r?2
+

1

r?2
∂ 2T?

∂θ ?2

]
+

σB2U2
0R

2

µcp(T0 �T1)
(u?r � u

?
θ )

2 = 0 (3.4.4)

26



Inserting the dimensionless numbers in equation (3.4.4), it transforms to

1

Pr

[
1

r?
∂T?

∂ r?
+

∂ 2T?

∂ r?2
+

1

r?2
∂ 2T?

∂θ ?2

]
+EcHa2(u?r � u

?
θ )

2 = 0

Neglecting the ?’s gives

1

Pr

[
1

r

∂T

∂ r
+

∂ 2T

∂ r2
+

1

r2
∂ 2T

∂θ2

]
+EcHa2(ur � uθ )

2 = 0 (3.4.5)

3.5 Equations in terms of stream function

Stream function which is represented by ψ , Nikolaos [22], is introduced in equations (3.4.1),

(3.4.2) and (3.4.5) to reduce the number of dependent variables from two to one. This is effected

by using the relations ur = 1
r

∂ψ

∂θ
and uθ = � ∂ψ

∂ r ,

3.5.1 Navier-Stokes equations in terms of stream function

For equation (3.4.1);

ur
∂uθ

∂ r
= �

1

r

∂ψ

∂θ

∂ 2ψ

∂ r2

uθ

r

∂uθ

∂θ
=

1

r

(
�

∂ψ

∂ r

)
∂

∂θ

(
�

∂ψ

∂ r

)
=

1

r

∂ψ

∂ r

∂ 2ψ

∂ r∂θ

uruθ

r
=

1

r2
∂ψ

∂θ

(
�

∂ψ

∂ r

)
= �

1

r2
∂ψ

∂θ

∂ψ

∂ r

1

r

∂uθ

∂ r
=

1

r

∂

∂ r

(
�

∂ψ

∂ r

)
= �

1

r

∂ 2ψ

∂ r2

∂ 2uθ

∂ r2
=

∂

∂ r

∂

∂ r

(
�

∂ψ

∂ r

)
= �

∂ 3ψ

∂ r3

1

r2
∂ 2uθ

∂θ2
=

1

r2
∂

∂θ

∂

∂θ

(
�

∂ψ

∂ r

)
= �

1

r2
∂ 3ψ

∂θ2∂ r
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2

r2
∂ur
∂θ

=
2

r2
∂

∂θ

(
1

r

∂ψ

∂θ

)
=

2

r3
∂ 2ψ

∂θ2

�
uθ

r2
= �

1

r2

(
�

∂ψ

∂ r

)
=

1

r2
∂ψ

∂ r

Nuθ = �N
∂ψ

∂ r

Setting the terms above in equation (3.4.1), it hands out

∂ψ

∂ r

∂ 2ψ

∂ r∂θ
�

∂ψ

∂θ

∂ 2ψ

∂ r2
�
1

r

∂ψ

∂θ

∂ψ

∂ r
=

1

Re

[
1

r

∂ψ

∂ r
+

2

r2
∂ 2ψ

∂θ2
�
1

r

∂ 3ψ

∂θ2∂ r
� r

∂ 3ψ

∂ r3
�

∂ 2ψ

∂ r2

]
�Nr

∂ψ

∂ r
+rγθ

From assumption (xi), gravitational force is constant and does not vary so that setting the

gravitational force, λθ = rγθ , the above expression becomes

∂ψ

∂ r

∂ 2ψ

∂ r∂θ
�

∂ψ

∂θ

∂ 2ψ

∂ r2
�
1

r

∂ψ

∂θ

∂ψ

∂ r
=

1

Re

[
1

r

∂ψ

∂ r
+

2

r2
∂ 2ψ

∂θ2
�
1

r

∂ 3ψ

∂θ2∂ r
� r

∂ 3ψ

∂ r3
�

∂ 2ψ

∂ r2

]
�Nr

∂ψ

∂ r
+λθ (3.5.1)

The same procedure is done for equation (3.4.2) so that;

ur
∂ur
∂ r

= �
1

r3

[
∂ψ

∂θ

]2

uθ

r

∂ur
∂θ

= �
1

r2
∂ψ

∂ r

∂ 2ψ

∂θ2

u2
θ

r
=

1

r

[
∂ψ

∂ r

]2
1

r

∂ur
∂ r

=
1

r2
∂ 2ψ

∂ r∂θ
�
1

r3
∂ψ

∂θ
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∂ 2ur
∂ r2

=
2

r3
∂ψ

∂θ

1

r2
∂ 2ur
∂θ2

=
1

r3
∂ 3ψ

∂θ3

ur
r2

=
1

r3
∂ψ

∂θ

2

r2
∂uθ

∂θ
= �

2

r2
∂ 2ψ

∂θ∂ r

Nur =N
1

r

∂ψ

∂θ

Putting the terms above in equation (3.4.2), it becomes

�
1

r3

[
∂ψ

∂θ

]2
�
1

r2
∂ 2ψ

∂θ2

∂ψ

∂ r
�
1

r

[
∂ψ

∂ r

]2
=

1

Re

[
3

r2
∂ 2ψ

∂ r∂θ
+

1

r3
∂ 3ψ

∂θ3

]
�N

1

r

∂ψ

∂θ
+ γr (3.5.2)

3.5.2 Heat energy equation in terms of stream function

Stream function, ψ , is introduced in equation (3.4.5), it turns out to

1

Pr

[
1

r

∂T

∂ r
+

∂ 2T

∂ r2
+

1

r2
∂ 2T

∂θ2

]
+EcHa2

(
1

r

∂ψ

∂θ
+

∂ψ

∂ r

)2

= 0 (3.5.3)

Equations (3.5.1), (3.5.2) and (3.5.3) are the governing equations to be solved in the domain Ω

with boundary conditions;

1

r

∂ψ

∂θ
= �

∂ψ

∂ r
= 0

∂T

∂ r
=

∂T

∂θ
= 0

T = T0 when P = 0,T = T1 when P = r on Γ, where P is length of r measured from ellipse’s

centre.
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3.6 Similarity Transformation

Similarity transformation, Abbott et. al [23], is a methodology for converting a n-independent

variable differential equation to a n� 1 independent variable differential equation. When n = 2, a

pde revamps to an ode.

3.6.1 Similarity transformation for Navier-Stokes equation

Equation (3.5.1) with its boundary conditions is a non-linear partial differential equation. It

is converted into an ordinary differential equation by using similarity transformation. Abbott

et. al [23] considered similarity analysis of steady two dimensional, laminar boundary layer

equations using similarity transformations of the form η = y
xk
,h(η) = xcψ , where x,y are

cartesian coordinates, ψ is stream function, c,k are real numbers. In this study, the similarity

transformation used is of the form η = εr
nθn

such that ψ = εr
nθn

f(εr
nθn

), where n is an integer

and ε is the base of natural logarithm. η = εr
nθn

is chosen because it is infinitely differentiable

and will deliver coefficients of the form rnθn after differentiation has taken place to enable pdes

to be converted into odes. This transformation also converts non- linear pdes directly into linear

odes. When n = 0, a constant is formed and its derivative is zero. When n≥ 1, derivatives are

obtained but they cannot be integrated in section 3.7.24. When n≤ �1 derivatives are obtained and

can be worked out in section 3.7.24. However, as n increases, the expressions obtained become

more complex and difficult to work out. Consideration is therefore made for n = �1 so that: since

ψ = εr
�1θ�1

f(εr
�1θ�1

) then

∂ψ

∂ r
=

∂

∂ r

(
ε
r�1θ�1

f(εr
�1θ�1

)
)
= �r�2θ

�1
ε
r�1θ�1

f(εr
�1θ�1

) � r�2θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)
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∂ψ

∂θ
=

∂

∂θ

(
ε
r�1θ�1

f(εr
�1θ�1

)
)
= �r�1θ

�2
ε
r�1θ�1

f(εr
�1θ�1

) � r�1θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)

∂ 2ψ

∂ r∂θ
=

∂

∂ r

(
�r�1θ

�2
ε
r�1θ�1

f(εr
�1θ�1

) � r�1θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)
)
=

r�3θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)+r�2θ
�2

ε
r�1θ�1

f(εr
�1θ�1

)+3r�3θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+r�2θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)+r�3θ
�3

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

∂ 2ψ

∂ r2
= r�4θ

�2
ε
r�1θ�1

f(εr
�1θ�1

)+2r�3θ
�1

ε
r�1θ�1

f(εr
�1θ�1

)+3r�4θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+2r�3θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)+r�4θ
�2

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

∂ 2ψ

∂θ2
= r�2θ

�4
ε
r�1θ�1

f(εr
�1θ�1

)+2r�1θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)+3r�2θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+2r�1θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+r�2θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

∂ 3ψ

∂ r∂θ2
= �r�4θ

�5
ε
r�1θ�1

f(εr
�1θ�1

) � 4r�3θ
�4

ε
r�1θ�1

f(εr
�1θ�1

) � 2r�2θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)

�7r�4θ
�5

ε
2r�1θ�1

f ′(εr
�1θ�1

) � 12r�3θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

) � 2r�2θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)

�6r�4θ
�5

ε
3r�1θ�1

f ′′(εr
�1θ�1

) � 4r�3θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

) � r�4θ
�5

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)

∂ 3ψ

∂ r3
= �r�6θ

�3
ε
r�1θ�1

f(εr
�1θ�1

) � 6r�5θ
�2

ε
r�1θ�1

f(εr
�1θ�1

) � 6r�4θ
�1

ε
r�1θ�1

f(εr
�1θ�1

)

�7r�6θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

) � 18r�5θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

) � 6r�4θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)

�6r�6θ
�3

ε
3r�1θ�1

f ′′(εr
�1θ�1

) � 6r�5θ
�2

ε
3r�1θ�1

f ′′(εr
�1θ�1

) � r�6θ
�3

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)

On multiplying terms, we get;

∂ψ

∂ r

∂ 2ψ

∂ r∂θ
= �r�5θ

�4
ε
2r�1θ�1

(f(εr
�1θ�1

))2 � r�4θ
�3

ε
2r�1θ�1

(f(εr
�1θ�1

))2

31



�4r�5θ
�4

ε
3r�1θ�1

f(εr
�1θ�1

)f ′(εr
�1θ�1

) � 2r�4θ
�3

ε
3r�1θ�1

f(εr
�1θ�1

)f ′(εr
�1θ�1

)

�3r�5θ
�4

ε
4r�1θ�1

(f ′(εr
�1θ�1

))2 � r�4θ
�3

ε
4r�1θ�1

(f ′(εr
�1θ�1

))2

�r�5θ
�4

ε
4r�1θ�1

f(εr
�1θ�1

)f ′′(εr
�1θ�1

) � r�5θ
�4

ε
5r�1θ�1

f ′(εr
�1θ�1

)f ′′(εr
�1θ�1

)

�
∂ψ

∂θ

∂ 2ψ

∂ r2
= r�5θ

�4
ε
2r�1θ�1

(f(εr
�1θ�1

))2+2r�4θ
�3

ε
2r�1θ�1

(f(εr
�1θ�1

))2

+4r�5θ
�4

ε
3r�1θ�1

f(εr
�1θ�1

)f ′(εr
�1θ�1

)+4r�4θ
�3

ε
3r�1θ�1

f(εr
�1θ�1

)f ′(εr
�1θ�1

)

+3r�5θ
�4

ε
4r�1θ�1

(f ′(εr
�1θ�1

))2+2r�4θ
�3

ε
4r�1θ�1

(f ′(εr
�1θ�1

))2

+r�5θ
�4

ε
4r�1θ�1

f(εr
�1θ�1

)f ′′(εr
�1θ�1

)+r�5θ
�4

ε
5r�1θ�1

f ′(εr
�1θ�1

)f ′′(εr
�1θ�1

)

�
1

r

∂ψ

∂ r

∂ψ

∂θ
= �r�4θ

�3
ε
2r�1θ�1

(f(εr
�1θ�1

))2 � 2r�4θ
�3

ε
3r�1θ�1

f(εr
�1θ�1

)f ′(εr
�1θ�1

)

�r�4θ
�3

ε
4r�1θ�1

(f ′(εr
�1θ�1

))2

1

r

∂ψ

∂ r
= �r�3θ

�1
ε
r�1θ�1

f(εr
�1θ�1

) � r�3θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)

2

r2
∂ 2ψ

∂θ2
= 2r�4θ

�4
ε
r�1θ�1

f(εr
�1θ�1

)+4r�3θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)

+6r�4θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

)+4r�3θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+2r�4θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

�
1

r

∂ 3ψ

∂ r∂θ2
= r�5θ

�5
ε
r�1θ�1

f(εr
�1θ�1

)+4r�4θ
�4

ε
r�1θ�1

f(εr
�1θ�1

)

+2r�3θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)+7r�5θ
�5

ε
2r�1θ�1

f ′(εr
�1θ�1

)+12r�4θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+2r�3θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+6r�5θ
�5

ε
3r�1θ�1

f ′′(εr
�1θ�1

)+4r�4θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

+r�5θ
�5

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)

�r
∂ 3ψ

∂ r3
= r�5θ

�3
ε
r�1θ�1

f(εr
�1θ�1

)+6r�4θ
�2

ε
r�1θ�1

f(εr
�1θ�1

)
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+6r�3θ
�1

ε
r�1θ�1

f(εr
�1θ�1

)+7r�5θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+18r�4θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+6r�3θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)+6r�5θ
�3

ε
3r�1θ�1

f ′′(εr
�1θ�1

)+6r�4θ
�2

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

+r�5θ
�3

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)

�Ha2r
∂ψ

∂ r
= r�1θ

�1
ε
r�1θ�1

Ha2f(εr
�1θ�1

)+r�1θ
�1

ε
2r�1θ�1

Ha2f ′(εr
�1θ�1

)

Substituting the multiplied terms above in equation (3.5.1), it becomes

r�5θ
�3

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)+r�5θ
�5

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)+5r�4θ
�2

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

+6r�5θ
�3

ε
3r�1θ�1

f ′′(εr
�1θ�1

)+6r�4θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

)+6r�5θ
�5

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

+3r�3θ
�1

ε
2r�1θ�1

f ′(εr
�1θ�1

)+15r�4θ
�2

ε
2r�1θ�1

f ′(εr
�1θ�1

)+6r�3θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+7r�5θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+18r�4θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

)+7r�5θ
�5

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+3r�3θ
�1

ε
r�1θ�1

f(εr
�1θ�1

)+5r�4θ
�2

ε
r�1θ�1

f(εr
�1θ�1

)+6r�3θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)

+r�5θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)+6r�4θ
�4

ε
r�1θ�1

f(εr
�1θ�1

)+r�5θ
�5

ε
r�1θ�1

f(εr
�1θ�1

)

+r�1θ
�1

ε
2r�1θ�1

Ha2f ′(εr
�1θ�1

)+r�1θ
�1

ε
r�1θ�1

Ha2f(εr
�1θ�1

)+Reλθ = 0 (3.6.1)

At this stage, only terms whose coefficients are r�1θ�1 or having their powers multiples of r�1θ�1

are considered. This is because we started by setting similarity transformation to be of the form

r�1θ�1. It is prudent that we again select only terms of the same formation at the end of similarity

transformation. Otherwise expressions formed are complex and difficult to solve. The terms left

out in equation (3.6.1) are considered to have negligible effect and have their sum equal to zero.
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Equation (3.6.1) become

r�5θ
�5

ε
4r�1θ�1

f ′′′(εr
�1θ�1

)+6r�4θ
�4

ε
3r�1θ�1

f ′′(εr
�1θ�1

)+6r�5θ
�5

ε
3r�1θ�1

f ′′(εr
�1θ�1

)

+6r�3θ
�3

ε
2r�1θ�1

f ′(εr
�1θ�1

)+18r�4θ
�4

ε
2r�1θ�1

f ′(εr
�1θ�1

)+7r�5θ
�5

ε
2r�1θ�1

f ′(εr
�1θ�1

)

+6r�3θ
�3

ε
r�1θ�1

f(εr
�1θ�1

)+6r�4θ
�4

ε
r�1θ�1

f(εr
�1θ�1

)+r�5θ
�5

ε
r�1θ�1

f(εr
�1θ�1

)

+r�1θ
�1

ε
2r�1θ�1

Ha2f ′(εr
�1θ�1

)+r�1θ
�1

ε
r�1θ�1

Ha2f(εr
�1θ�1

)+Reλθ = 0 (3.6.2)

Since η = εr
�1θ�1

, equation (3.6.2) gives

η
4logη

5f ′′′(η)+6η
3logη

4f ′′(η)+6η
3logη

5f ′′(η)+6η
2logη

3f ′(η)+18η
2logη

4f ′(η)

+7η
2logη

5f ′(η)+6η logη
3f(η)+6η logη

4f(η)+η logη
5f(η)+η

2logηHa2f ′(η)

+η logηHa2f(η)+Reλθ = 0 (3.6.3)

Boundary conditions being

1

r

∂ψ

∂θ
= �r�2θ

�2
ε
2r�1θ�1

f ′(εr
�1θ�1

) � r�2θ
�2

ε
r�1θ�1

f(εr
�1θ�1

)

= f ′(εr
�1θ�1

) � f(εr
�1θ�1

) = 0

f ′(η) � f(η) = 0

on Γ

Similarity transformation technique has been used to convert Navier-Stokes equation (3.5.1),

which is a pde into an ode, equation (3.6.3).
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3.6.2 Similarity transformation for heat energy equation

Equation (3.5.3) is a partial differential equation which is converted into an ordinary differential

equation using similarity transformation, Abbott et.al [23]. The similarity transformations

embraced are of the form τ = εη and η = r�1θ�1 such that T = h(εr
�1θ�1

) and ψ = f(εr
�1θ�1

),

where ε is the base of the natural logarithm. Then,

∂T

∂ r
=

∂

∂ r

[
h(εr

�1θ�1

)
]
= �r�2θ

�1
ε
r�1θ�1

h′(εr
�1θ�1

)

∂ 2T

∂ r2
=

∂

∂ r

[
�r�2θ

�1
ε
r�1θ�1

h′(εr
�1θ�1

)
]

= r�4θ
�2

ε
r�1θ�1

h′(εr
�1θ�1

)+2r�3θ
�1

ε
r�1θ�1

h′(εr
�1θ�1

)+r�4θ
�2

ε
2r�1θ�1

h′′(εr
�1θ�1

)

∂T

∂θ
=

∂

∂θ

[
h(εr

�1θ�1

)
]
= �r�1θ

�2
ε
r�1θ�1

h′(εr
�1θ�1

)

∂ 2T

∂θ2
=

∂

∂θ

[
�r�1θ

�2
ε
r�1θ�1

h′(εr
�1θ�1

)
]

= r�2θ
�4

ε
r�1θ�1

h′(εr
�1θ�1

)+2r�1θ
�3

ε
r�1θ�1

h′(εr
�1θ�1

)+r�2θ
�4

ε
2r�1θ�1

h′′(εr
�1θ�1

)

1

r

∂T

∂ r
= �r�3θ

�1
ε
r�1θ�1

h′(εr
�1θ�1

)

1

r2
∂ 2T

∂θ2
=

r�4θ
�4

ε
r�1θ�1

h′(εr
�1θ�1

)+2r�3θ
�3

ε
r�1θ�1

h′(εr
�1θ�1

)+r�4θ
�4

ε
2r�1θ�1

h′′(εr
�1θ�1

)

(
1

r

∂ψ

∂θ
+

∂ψ

∂ r

)2

=
1

r2

(
∂ψ

∂θ

)2

+
2

r

∂ψ

∂θ

∂ψ

∂ r
+

(
∂ψ

∂ r

)2

∂ψ

∂ r
=

∂

∂ r

[
f(εr

�1θ�1

)
]
= �r�2θ

�1
ε
r�1θ�1

f ′(εr
�1θ�1

)

∂ψ

∂θ
=

∂

∂θ

[
f(εr

�1θ�1

)
]
= �r�1θ

�2
ε
r�1θ�1

f ′(εr
�1θ�1

)
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1

r2

(
∂ψ

∂θ

)2

= r�4θ
�4

ε
2r�1θ�1

[
f ′(εr

�1θ�1

)
]2

2

r

∂ψ

∂θ

∂ψ

∂ r
= 2r�4θ

�3
ε
2r�1θ�1

[
f ′(εr

�1θ�1

)
]2

(
∂ψ

∂ r

)2

= r�4θ
�2

ε
2r�1θ�1

[
f ′(εr

�1θ�1

)
]2

Inserting these terms in equation (3.5.3), it produces

1

Pr

[
r�4θ

�2
ε
r�1θ�1

h′(εr
�1θ�1

)+r�3θ
�1

ε
r�1θ�1

h′(εr
�1θ�1

)
]

+

1

Pr

[
r�4θ

�2
ε
2r�1θ�1

h′′(εr
�1θ�1

)+r�4θ
�4

ε
r�1θ�1

h′(εr
�1θ�1

)+2r�3θ
�3

ε
r�1θ�1

h′(εr
�1θ�1

)
]

+

1

Pr

[
r�4θ

�4
ε
2r�1θ�1

h′′(εr
�1θ�1

)
]
+EcHa2

[
r�4θ

�4
ε
2r�1θ�1

[
f ′(εr

�1θ�1

)
]2]

+

EcHa2
[
2r�4θ

�3
ε
2r�1θ�1

[(
f ′(εr

�1θ�1

)
)]2

+r�4θ
�2

ε
2r�1θ�1

[(
f ′(εr

�1θ�1

)
)]2]

= 0 (3.6.4)

Multiplying both sides of equation (3.6.4) by r2, delivers

1

Pr

[
r�2θ

�2
ε
r�1θ�1

h′(εr
�1θ�1

)+r�1θ
�1

ε
r�1θ�1

h′(εr
�1θ�1

)
]

+

1

Pr

[
r�2θ

�2
ε
2r�1θ�1

h′′(εr
�1θ�1

)+r�2θ
�4

ε
r�1θ�1

h′(εr
�1θ�1

)+2r�1θ
�3

ε
r�1θ�1

h′(εr
�1θ�1

)
]
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+

1

Pr

[
r�2θ

�4
ε
2r�1θ�1

h′′(εr
�1θ�1

)
]
+EcHa2

[
r�2θ

�4
ε
2r�1θ�1

[
f ′(εr

�1θ�1

)
]2]

+

EcHa2
[
2r�2θ

�3
ε
2r�1θ�1

[(
f ′(εr

�1θ�1

)
)]2

+r�2θ
�2

ε
2r�1θ�1

[(
f ′(εr

�1θ�1

)
)]2]

= 0 (3.6.5)

Taking into account terms whose coefficients are r�1θ�1 or its powers’ multiples, dwindles

equation (3.6.5) to

1

Pr

[
r�1θ

�1h′(εr
�1θ�1

)+h′(εr
�1θ�1

)+r�1θ
�1

ε
r�1θ�1

h′′(εr
�1θ�1

)
]

+EcHa2
[
r�1θ

�1
ε
r�1θ�1

[(
f ′(εr

�1θ�1

)
)]2]

= 0 (3.6.6)

Equation (3.6.6) metamorphoses to

1

Pr

[
τ logτh′′(τ)+h′(τ)+ logτh′(τ)

]
+ τ logτEcHa2

[[
f ′(τ)

]2]
= 0 (3.6.7)

since τ = εr
�1θ�1

. Boundary conditions being:

f(τ) = h(τ) = 0

1

r

∂ψ

∂θ
= �r�2θ

�2
ε
r�1θ�1

f ′(εr
�1θ�1

) = τ(logτ)2f ′(τ) = 0

�
∂ψ

∂ r
= �r�2θ

�1
ε
r�1θ�1

f ′(εr
�1θ�1

) = f ′(τ) = 0

∂T

∂θ
= �r�1θ

�2
ε
r�1θ�1

h′(εr
�1θ�1

) = h′(τ) = 0
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∂T

∂ r
= �r�2θ

�1
ε
r�1θ�1

h′(εr
�1θ�1

) = h′(τ) = 0

on Γ

At this juncture, similarity transformation technique has been used to convert heat energy equation

(3.5.3) which is a pde into an ode, equation (3.6.7).

3.7 Finite Element Method (FEM)

Finite Element Method (FEM), Reddy [24], is a numerical technique for finding approximate

solutions to boundary value problems for differential equations. Equation (3.6.3), which is utilized

to find velocity profile and equation (3.6.7), which is manipulated to find temperature distribution

are solved using FEM. FEM involves:

i. Discretization or subdivision of the domain.

ii. Selection of the interpolation functions, to provide an approximation of the unknown

solution within an element.

iii. Formulation of the system of equations

iv. Solution of the system of equations. After the system of equations are solved, results are

displayed in form of tables and graphs.

To employ FEM, for equation (3.6.3), Ha,Re and λθ are known, f(η) is the scalar unknown,which

is to be worked out. For equation (3.6.7), Ha,Pr and Ec are known, h(τ) is the scalar unknown.

f(τ) is also known since it is the value of velocity worked out first when examining velocity

profile. It is found to be f. This is shown in subsection 4.1, where velocity profile is worked out

first to find f. f is then used to find temperature distribution, h in sub section 4.2. Equation (3.6.7)
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revamps to

1

Pr

[
τ logτh′′(τ)+h′(τ)+ logτh′(τ)

]
+ τ logτEcHa2f2 = 0 (3.7.1)

Boundary conditions lessen to

h(τ) = h′(τ) = 0

The approximate solution is C0 continuous, i.e only the 0th order solution (the solution itself)

is continuous across element interfaces, but not higher order derivatives.

3.7.1 Method of weighted residuals for velocity profile

Equation (3.6.3) is the strong form of the problem. The method of weighted residuals is used to

obtain the weak form as follows: The residual of the differential equation is obtained by collecting

all the terms on one side of the equation i.e

R(η) = η
4 (logη)5 f ′′′(η)+6η

3 (logη)4 f ′′(η)+6η
3 (logη)5 f ′′(η)+6η

2 (logη)3 f ′(η)

+18η
2 (logη)4 f ′(η)+7η

2 (logη)5 f ′(η)+6η (logη)3 f(η)+6η (logη)4 f(η)+η (logη)5 f(η)

+η
2logηHa2f ′(η)+η logηHa2f(η)+Reλθ (3.7.2)

Minimization of the residual is carried out so that

∫
Ω

w(η)R(η)dη = 0 (3.7.3)
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where w(η) is weight (or test) function. Substituting equation (3.7.2) in equation (3.7.3), it turns

out into

∫
Ω

[
η
4 (logη)5w(η)f ′′′(η)+6η

3 (logη)4w(η)f ′′(η)+6η
3 (logη)5w(η)f ′′(η)

]
dη

+
∫

Ω

[
6η

2 (logη)3w(η)f ′(η)+18η
2 (logη)4w(η)f ′(η)+7η

2 (logη)5w(η)f ′(η)
]
dη

+
∫

Ω

[
6η (logη)3w(η)f(η)+6η (logη)4w(η)f(η)+η (logη)5w(η)f(η)

]
dη

+
∫

Ω

[
η
2logηHa2w(η)f ′(η)+η logηHa2w(η)f(η)+w(η)Reλθ

]
dη = 0 (3.7.4)

When a C0 continuous solution is used in equation (3.7.4), the third and the second order

derivatives can not be evaluated properly. The order of the third and the second derivatives is

lowered to one by applying integration by parts to the first three terms on the left of equation

(3.7.4) as follows

∫
Ω

η
4 (logη)5w(η)f ′′′(η)dη = �

∫
Ω

5η
3 (logη)4w(η)f ′′(η)dη �

∫
Ω

4η
3 (logη)5w(η)f ′′(η)dη

�
∫

Ω

η
4 (logη)5w′(η)f ′′(η)dη +

∫
Γ

η
4 (logη)5w(η)f ′′(η)nηdΓ (3.7.5)

The last term of equation (3.7.5) is the boundary integral and is evaluated at the boundaries Γ of

the domain Ω. Where nη is the η component of unit outward normal of boundary. nη is equal

to -1 and 1 at the left and right boundaries of the problem domain respectively. Placing equation

(3.7.5) in equation (3.7.4), delivers

∫
Ω

[
η
3 (logη)4w(η)f ′′(η) �η

4 (logη)5w′(η)f ′′(η)+2η
3 (logη)5w(η)f ′′(η)

]
dη
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+
∫

Ω

[
6η

2 (logη)3w(η)f ′(η)+18η
2 (logη)4w(η)f ′(η)+7η

2 (logη)5w(η)f ′(η)
]
dη

+
∫

Ω

[
6η (logη)3w(η)f(η)+6η (logη)4w(η)f(η)+η (logη)5w(η)f(η)+

]
dη

+
∫

Ω

[
η
2logηHa2w(η)f ′(η)+η logηHa2w(η)f(η)+w(η)Reλθ

]
dη =

�
∫

Γ

η
4 (logη)5w(η)f ′′(η)nηdΓ (3.7.6)

Integration by parts is carried out on the first term on the left of equation (3.7.6), it changes to

∫
Ω

η
3 (logη)4w(η)f ′′(η)dη = �

∫
Ω

4η
2 (logη)3w(η)f ′(η)dη �

∫
Ω

3η
2 (logη)4w(η)f ′(η)dη

�
∫

Ω

η
3 (logη)4w′(η)f ′(η)dη +

∫
Γ

η
3 (logη)4w(η)f ′(η)nηdΓ (3.7.7)

Settling equation (3.7.7) in equation (3.7.6), results in

∫
Ω

[
�η

4 (logη)5w′(η)f ′′(η)+2η
3 (logη)5w(η)f ′′(η)+2η

2 (logη)3w(η)f ′(η)
]
dη

+
∫

Ω

[
�η

3 (logη)4w′(η)f ′(η)+15η
2 (logη)4w(η)f ′(η)+7η

2 (logη)5w(η)f ′(η)
]
dη

+
∫

Ω

[
6η (logη)3w(η)f(η)+6η (logη)4w(η)f(η)+η (logη)5w(η)f(η)+

]
dη

+
∫

Ω

[
η
2logηHa2w(η)f ′(η)+η logηHa2w(η)f(η)+w(η)Reλθ

]
dη =

�
∫

Γ

η
4 (logη)5w(η)f ′′(η)nηdΓ�

∫
Γ

η
3 (logη)4w(η)f ′(η)nηdΓ (3.7.8)

Upon integrating by parts the first term on the left in equation (3.7.8), yields

�
∫

Ω

η
4 (logη)5w′(η)f ′′(η)dη =

∫
Ω

5η
3 (logη)4w′(η)f ′(η)dη +

∫
Ω

4η
3 (logη)5w′(η)f ′(η)dη
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+
∫

Ω

η
4 (logη)5w′′(η)f ′(η)dη �

∫
Γ

η
4 (logη)5w′(η)f ′(η)nηdΓ (3.7.9)

∫
Ω

η4 (logη)5w′′(η)f ′(η)dη = 0, since test function w(η) can be differentiated only once. In-

serting equation (3.7.9) in equation (3.7.8), delivers

∫
Ω

[
2η

3 (logη)5w(η)f ′′(η)+2η
2 (logη)3w(η)f ′(η)+4η

3 (logη)4w′(η)f ′(η)
]
dη

+
∫

Ω

[
4η

3 (logη)5w′(η)f ′(η)+15η
2 (logη)4w(η)f ′(η)+7η

2 (logη)5w(η)f ′(η)
]
dη

+
∫

Ω

[
6η (logη)3w(η)f(η)+6η (logη)4w(η)f(η)+η (logη)5w(η)f(η)+

]
dη

+
∫

Ω

[
η
2logηHa2w(η)f ′(η)+η logηHa2w(η)f(η)+w(η)Reλθ

]
dη =

�
∫

Γ

η
4 (logη)5w(η)f ′′(η)nηdΓ�

∫
Γ

η
3 (logη)4w(η)f ′(η)nηdΓ+

∫
Γ

η
4 (logη)5w′(η)f ′(η)nηdΓ

(3.7.10)

When the first term on the left of equation (3.7.10) is integrated by parts, it converts to

∫
Ω

2η
3 (logη)5w(η)f ′′(η)dη = �

∫
Ω

10η
2 (logη)4w(η)f ′(η)dη �

∫
Ω

6η
2 (logη)5w(η)f ′(η)dη

�
∫

Ω

2η
3 (logη)5w′(η)f ′(η)dη +

∫
Γ

2η
3 (logη)5w(η)f ′(η)nηdΓ (3.7.11)

Setting equation (3.7.11) in equation (3.7.10), it turns out to

∫
Ω

[
2η

2 (logη)3w(η)f ′(η)+5η
2 (logη)4w(η)f ′(η)+η

2 (logη)5w(η)f ′(η)
]
dη

+
∫

Ω

[
4η

3 (logη)4w′(η)f ′(η)+2η
3 (logη)5w′(η)f ′(η)+6η (logη)3w(η)f(η)

]
dη

+
∫

Ω

[
6η (logη)4w(η)f(η)+η (logη)5w(η)f(η)+η

2logηHa2w(η)f ′(η)
]
dη
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+
∫

Ω

[
η logηHa2w(η)f(η)+w(η)Reλθ

]
dη = �

∫
Γ

η
4 (logη)5w(η)f ′′(η)nηdΓ

�
∫

Γ

η
3 (logη)4w(η)f ′(η)nηdΓ+

∫
Γ

η
4 (logη)5w′(η)f ′(η)nηdΓ�

∫
Γ

2η
3 (logη)5w(η)f ′(η)nηdΓ

(3.7.12)

Equation (3.7.12) is the weak formulation of equation (3.6.3). The weak form enable the working

out with C0 continuous approximate solutions to take place.

3.7.2 Method of weighted residuals for temperature distribution

Equation (3.7.1) is the strong form of the problem. The residual of the differential equation is

given by

R(τ) =
1

Pr

[
τ logτh′′(τ)+h′(τ)+ logτh′(τ)

]
+ τ logτEcHa2f2 (3.7.13)

Minimization on the residual in the weighted integral is done so that

∫
Ω

w(τ)R(τ)dτ = 0 (3.7.14)

where w(τ) is weight (or test) function. Setting equation (3.7.13) in equation (3.7.14), gives

∫
Ω

(
1

Pr

[
w(τ)τ logτh′′(τ)+w(τ)h′(τ)+w(τ)logτh′(τ)

]
+w(τ)τ logτEcHa2f2

)
dτ = 0

(3.7.15)

When a C0 continuous solution is used in equation (3.7.15), the second order derivative can not be

evaluated properly. To work with the C0 continuous solution, the order of the second derivative

is lowered to one by administering integration by parts to the first term on the left of equation

43



(3.7.15) as follows:

1

Pr

∫
Ω

w(τ)τ logτh′′(τ)dτ = �
1

Pr

∫
Ω

w(τ)h′(τ)dτ �
1

Pr

∫
Ω

w(τ)logτh′(τ)dτ

�
1

Pr

∫
Ω

w′(τ)τ logτh′(τ)dτ +
1

Pr

∫
Γ

w(τ)τ logτh′(τ)nτdΓ (3.7.16)

The last term of equation (3.7.16) is the boundary integral and is evaluated at the boundaries Γ of

the domain Ω. Where nτ is the τ component of unit outward normal of the boundary. Inserting

equation (3.7.16) in equation (3.7.15), grants

∫
Ω

(
�
1

Pr
w′(τ)τ logτh′(τ)+w(τ)τ logτEcHa2g2

)
dτ

= �
1

Pr

∫
Γ

w(τ)τ logτh′(τ)nτdΓ (3.7.17)

Equation (3.7.17) is the weak formulation of equation (3.6.7).

3.7.3 Boundary conditions for velocity profile

The boundary terms on the right of equation (3.7.12) gives the primary and secondary variables of

the problem. The dependent variable of of the problem, f, expressed in the same form as this first

term of boundary term is called the primary variable. For this case it is f0. The second part of

the boundary term comprises the rest of the terms with derivatives of f, which is the secondary

variable (SV). The primary variable is provided at the boundary of the problem and is known

as Essential (Dirichlet) boundary condition. The secondary variable at the boundary is called

Natural (Neumann) boundary condition. The boundary conditions for the problem therefore are

Essential boundary condition:

f = f0 (3.7.18)
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Natural boundary condition:

�
∫

Γ

η
3logη

4w(η)f ′(η)dΓ+
∫

Γ

η
4logη

5w′(η)f ′(η)dΓ�
∫

Γ

2η
3logη

5w(η)f ′(η)dΓ

�
∫

Γ

η
4logη

5w(η)f ′′(η)dΓ = q0 (3.7.19)

where q0 is velocity profile natural boundary condition. Weak formulation also enable the

boundary conditions to be included into the formulation. This property of FEM is unique and

is not shared with any other technique like Finite Difference or Finite Volume Method. For the

Natural boundary condition, the secondary variable inside the boundary integral is simply replaced

by the specified q0 value as shown below

�
∫

Γ

η
3logη

4w(η)f ′(η)dΓ+
∫

Γ

η
4logη

5w′(η)f ′(η)dΓ�
∫

Γ

2η
3logη

5w(η)f ′(η)dΓ

�
∫

Γ

η
4logη

5w(η)f ′′(η)dΓ = �
∫

Γ

w(η)q0dΓ

For the one-dimensional problem, boundary of the problem domain consists of of only two

discrete points i.e the right end and the left end nodes of the finite element mesh. Consequently

for the one- dimensional problem, there is no need to evaluate integrals as shown above, instead

the integrand is evaluated at the boundary node.

3.7.4 Boundary conditions for temperature distribution

The boundary term on the right of equation (3.7.17) gives the primary and secondary variables of

the problem. The boundary conditions for the problem therefore are

Essential boundary condition:

h = h0 (3.7.20)
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Natural boundary condition:

τ logτh′(τ)nτ = p0 (3.7.21)

For the Natural boundary condition, the secondary variable inside the boundary integral is simply

replaced by the specified p0 value as shown below

�
∫

Γ

w(τ)τ logτh′(τ)nτdΓ = �
∫

Γ

w(τ)p0dΓ

3.7.5 Constructing an approximate solution using shape functions for ve-

locity profile

When the desired C0 continuous approximate solution is

fapp(η) =
N

∑
j=1

fjsj(η) (3.7.22)

Where fapp is the approximate solution to be found, N is the number of nodes in the finite element

mesh, fj’s are the nodal unknown values that will be calculated at the end of finite element solution

and sj’s are the shape (basis) functions that are used to construct the approximate solution. The

shape functions have compact support i.e they are nonzero only over the elements which touch the

node with which they are associated, everywhere else they are equal to zero. They also possess

kronecker-delta property i.e

sj(ηi) = δij =


1 if i = j

0 if i 6= j

(3.7.23)
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Setting equation (3.7.22) in equation (3.7.12), it metamorphoses to

∫
Ω

[
2η

2 (logη)3w(η)
N

∑
j=1

fjs
′
j(η)+5η

2 (logη)4w(η)
N

∑
j=1

fjs
′
j(η)+η

2 (logη)5w(η)
N

∑
j=1

fjs
′
j(η)

]
dη

+
∫

Ω

[
4η

3 (logη)4w′(η)
N

∑
j=1

fjs
′
j(η)+2η

3 (logη)5w′(η)
N

∑
j=1

fjs
′
j(η)+6η (logη)3w(η)

N

∑
j=1

fjsj(η)

]
dη

+
∫

Ω

[
6η (logη)4w(η)

N

∑
j=1

fjsj(η)+η (logη)5w(η)
N

∑
j=1

fjsj(η)+η
2logηHa2w(η)

N

∑
j=1

fjs
′
j(η)

]
dη

+
∫

Ω

[
η logηHa2w(η)

N

∑
j=1

fjsj(η)+w(η)Reλθ

]
dη = �

∫
Γ

SVw(η)dΓ (3.7.24)

where SV is the sum of secondary variables.

3.7.6 Constructing an approximate solution using shape functions for tem-

perature distribution

When the desired C0 continuous approximate solution is

happ(τ) =
N

∑
j=1

hjsj(τ) (3.7.25)

where happ is the approximate solution to be found, hj’s are the nodal unknown values that will

be calculated at the end of finite element solution. Putting equation (3.7.25) in equation (3.7.17)

gives ∫
Ω

(
�
1

Pr
w′(τ)τ logτ

N

∑
j=1

hjs
′
j(τ)+w(τ)τ logτEcHa2f2

)
dτ

= �
1

Pr

∫
Γ

w(τ)SVdΓ (3.7.26)

where SV is sum of secondary variables.
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3.7.7 Galerkin Finite Element Method for velocity profile

In the Galerkin Finite Element Method, Ioannis [25], weight functions of equation (3.7.24) are

selected to be the same as those of the shape functions i.e to get the ith equation we use

w(η) = si(η) (3.7.27)

Bringing equation (3.7.27) into equation (3.7.24) produces after taking the summation sign outside

and the integration sign inside

N

∑
j=1

[∫
Ω

{
2η

2 (logη)3 si(η)s
′
j(η)+5η

2 (logη)4 si(η)s
′
j(η)+η

2 (logη)5 si(η)s
′
j(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
4η

3 (logη)4 s′i(η)s
′
j(η)+2η

3 (logη)5 s′i(η)s
′
j(η)+6η (logη)3 si(η)sj(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
6η (logη)4 si(η)sj(η)+η (logη)5 si(η)sj(η)+η

2logηHa2si(η)s
′
j(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
η logηHa2si(η)sj(η)

}
dη

]
fj

= �
∫

Ω

si(η)Reλθdη �
∫

Γ

SVsi(η)dΓ i = 1,2, ...,N (3.7.28)

3.7.8 Galerkin Finite Element Method for temperature distribution

When the weight functions of equation (3.7.26) are selected to be the same as those of the shape

functions i.e to get the ith equation we employ

w(τ) = si(τ) (3.7.29)
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Placing equation (3.7.29) in equation (3.7.26), grants upon taking the summation sign outside and

the integration sign inside

N

∑
j=1

[∫
Ω

(
�
1

Pr
τ logτs′i(τ)s

′
j(τ)

)
dτ

]
hj

= �
∫

Ω

si(τ)τ logτEcHa2f2dτ �
1

Pr

∫
Γ

si(τ)SVdΓ i = 1,2, ...,N (3.7.30)

3.7.9 Global equation system for velocity profile

Equation (3.7.28) is expressed in the matrix notation given by

[W] [X] = [Y]+ [Z] (3.7.31)

which is global equation system, where W is the square stiffness matrix of size N×N, [X] is the

vector of nodal unknowns with N entries. [Y] and [Z] are the global force vector and boundary

integral vector respectively, each of size N×1. From equation (3.7.28)

Wij=
N

∑
j=1

[∫
Ω

{
2η

2 (logη)3 si(η)s
′
j(η)+5η

2 (logη)4 si(η)s
′
j(η)+η

2 (logη)5 si(η)s
′
j(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
4η

3 (logη)4 s′i(η)s
′
j(η)+2η

3 (logη)5 s′i(η)s
′
j(η)+6η (logη)3 si(η)sj(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
6η (logη)4 si(η)sj(η)+η (logη)5 si(η)sj(η)+η

2logηHa2si(η)s
′
j(η)

}
dη

]
fj

+
N

∑
j=1

[∫
Ω

{
η logηHa2si(η)sj(η)

}
dη

]
fj, Xj = fj,

Yi = �
∫

Ω

si(η)Reλθdη and Zi = �
∫

Γ

si(η)SVdΓ (3.7.32)
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[W] and [Y] are evaluated over the whole problem domain . [Z] is evaluated only at the problem

boundaries.

3.7.10 Global equation system for temperature distribution

Equation (3.7.30) is expressed in global equation system given by

[I] [J] = [K]+ [L] (3.7.33)

where I is the square stiffness matrix of size N×N, [J] is the vector of nodal unknowns with N

entries. [K] and [L] are the global force vector and boundary integral vector respectively each of

size N×1. From equations (3.7.30) and (3.7.33)

Iij =
∫

Ω

(
�
1

Pr
τ logτs′i(τ)s

′
j(τ)

)
dτ , Jj = hj,

Ki = �
∫

Ω

si(τ)τ logτEcHa2g2dτ and Li = �
1

Pr

∫
Γ

si(τ)SVdΓ (3.7.34)

[I] is evaluated over the whole problem. Temperature is considered constant at boundary so that

[L] is also constant at boundaries. [K] is considered varying over the whole domain since it

depends on fluid velocity which is maximum at the centre of pipe but decreases towards periphery

of pipe. Let Li = � 1
PrI21, where I21 is defined in subsection 3.7.16 so that I21 =

∫
Γ
si(τ)SVdΓ

3.7.11 Velocity elemental systems

Given that shape functions which appear in [W] integrals have non zero values only over a small

portion of the problem domain, these integrals are evaluated as sum of separate integrals over
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individual elements i.e

[W] =
E

∑
e=1

[We] (3.7.35)

where [We] is elemental stiffness matrix. From equation (3.7.32), the elemental stiffness matrix is

given by

We
ij =

∫
Ω

{
2η

2 (logη)3 si(η)s
′
j(η)+5η

2 (logη)4 si(η)s
′
j(η)+η

2 (logη)5 si(η)s
′
j(η)

}
dη

+
∫

Ω

{
4η

3 (logη)4 s′i(η)s
′
j(η)+2η

3 (logη)5 s′i(η)s
′
j(η)+6η (logη)3 si(η)sj(η)

}
dη

+
∫

Ω

{
6η (logη)4 si(η)sj(η)+η (logη)5 si(η)sj(η)+η

2logηHa2si(η)s
′
j(η)

}
dη

+
∫

Ω

{
η logηHa2si(η)sj(η)

}
dη (3.7.36)

All elements of
[
We

ij

]
are N×N square matrices. However since only two shape functions have

non-zero values over each element, there will be contribution to
[
We

ij

]
only from these two shape

functions i.e many of the entries of N×N matrix are zeroes. For instance the stiffness matrix[
We

ij

]
for a single element will be of the form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0

0 0 0 0 0

0 0 A B 0

0 0 C D 0

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
As seen from the matrix above, two non-zero shape functions over an element will create only

four non-zero entries in
[
We

ij

]
.
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3.7.12 Temperature elemental systems

Given that shape functions which appear in [I] integrals have non zero values only over a small

portion of the problem domain, these integrals are evaluated as sum of separate integrals over

individual elements i.e

[I] =
E

∑
e=1

[Ie] (3.7.37)

where [Ie] is elemental stiffness matrix. From equation (3.7.34), the elemental stiffness matrix is

given by

Ieij =
∫

Ω

(
�
1

Pr
τ logτs′i(τ)s

′
j(τ)

)
dτ (3.7.38)

Again all elements of
[
Ieij
]

are N×N square matrices. However since only two shape functions

have non-zero values over each element, there will be contribution to
[
Ieij
]

only from these two

shape functions i.e many of the entries of N×N matrix are zeroes.

3.7.13 Gauss quadrature integration for velocity profile

Gauss quadrature, Timothy [26], a numerical integration technique in which integrals are evaluated

between limits of -1 and 1, is utilized as follows:

∫ 1

�1
f(ξ )dξ =

GP

∑
k=1

f(ξk)wk (3.7.39)

where ξk are special Gauss quadrature points in the interval [�1,1] ,wk are the corresponding

Gauss quadrature weights and GP is the number of Gauss quadrature points to be used. Limits

of We
ij integral are η = ηe

1 and η = ηe
2 which are the coordinates of the two end points of the

element. To evaluate We
ij integral using Gauss quadrature, limits of the integral are changed to be

-1 and 1 which require change of variable. This leads to the use of master element in evaluating

52



elemental integrals. Using the Kroncker-delta property of shape functions, they are written in

terms of the master element coordinate ξ as, Timothy [26],

s1 =
1

2
(1� ξ ) and s2 =

1

2
(1+ξ ) (3.7.40)

To evaluate We
ij integrals, the global η coordinate is related to ξ coordinate by, Timothy [26],

η =
he

2
ξ +

ηe
1+ηe

2

2
(3.7.41)

where he is the length of element, e, given by he = ηe
2 � ηe

1 . Equation (3.7.36) is now written

using the ξ coordinate and new limits for Gauss quadrature integration and transforms into

We
ij =

∫ 1

�1

{
2η

2 (logη)3 si
dsj
dξ

dξ

dη
+5η

2 (logη)4 si
dsj
dξ

dξ

dη
+η

2 (logη)5 si
dsj
dξ

dξ

dη

}
dη

dξ
dξ

+
∫ 1

�1

{
4η

3 (logη)4
dsi
dξ

dξ

dη

dsj
dξ

dξ

dη
+2η

3 (logη)5
dsi
dξ

dξ

dη

dsj
dξ

dξ

dη
+6η (logη)3 si(η)sj(η)

}
dη

dξ
dξ

+
∫ 1

�1

{
6η (logη)4 si(η)sj(η)+η (logη)5 si(η)sj(η)+η

2logηHa2si
dsj
dξ

dξ

dη

}
dη

dξ
dξ

+
∫ 1

�1

{
η logηHa2si(η)sj(η)

} dη

dξ
dξ (3.7.42)

Upon defining Finite Element Jacobian as Je = dη

dξ
= he

2 , equation (3.7.42) produces

We
ij=

∫ 1

�1

{
2η

2 (logη)3 si
dsj
dξ

+5η
2 (logη)4 si

dsj
dξ

+η
2 (logη)5 si

dsj
dξ

+4η
3 (logη)4

dsi
dξ

dsj
dξ

1

Je

}
dξ

+
∫ 1

�1

{
2η

3 (logη)5
dsi
dξ

dsj
dξ

1

Je
+6η (logη)3 sisjJ

e+6η (logη)4 sisjJ
e+η (logη)5 sisjJ

e

}
dξ

+
∫ 1

�1

{
η
2logηHa2si

dsj
dξ

+η logηHa2sisjJ
e

}
dξ (3.7.43)
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Equation (3.7.43) is the state that is utilized to obtain velocity elemental stiffness matrix

3.7.14 Gauss quadrature integration for temperature distribution

Integrals are evaluated between limits of -1 and 1.

∫ 1

�1
h(ξ )dξ =

GP

∑
k=1

h(ξk)wk (3.7.44)

where ξk are special Gauss quadrature points in the interval [�1,1] ,wk are the corresponding

Gauss quadrature weights and GP is the number of Gauss quadrature points to be used. Limits of

Ieij integral are τ = τe1 and τ = τe2 which are the coordinates of the two end points of the element.

To evaluate Ieij integral using Gauss quadrature, limits of the integral are changed to be -1 and 1

which require change of variable. This leads to the use of master element in evaluating elemental

integrals. Using the Kroncker-delta property of shape functions, they are written in terms of the

master element coordinate ξ as, Timothy [26],

s1 =
1

2
(1� ξ ) and s2 =

1

2
(1+ξ ) (3.7.45)

To evaluate Ieij integrals, the global τ coordinate is related to ξ coordinate by, Timothy [26],

τ =
he

2
ξ +

τe1+ τe2

2
(3.7.46)

where he is the length of element e given by he = τe2 � τe1 . Equation (3.7.38) is now written using

the ξ coordinate and new limits for Gauss quadrature integration and transforms to

Ieij =
∫ 1

�1

(
�
1

Pr
τ logτ

dsi
dξ

dξ

dτ

dsj
dξ

dξ

dτ

)
dτ

dξ
dξ (3.7.47)
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Upon defining Finite Element Jacobian as Je = dτ

dξ
= he

2 , equation (3.7.47) shortens to

Ieij =
∫ 1

�1

(
�
1

Pr
τ logτ

dsi
dξ

dsj
dξ

1

Je

)
dξ (3.7.48)

Equation (3.7.48) is the state that is manipulated to obtain temperature elemental stiffness matrix.

3.7.15 Velocity profile assembly process

After calculating small 2×2 elemental stiffness matrices, they are assembled in proper locations

of the global system of equations. This is done by first generating a local to global node mapping.

Figure 3.7.1: 5 linear elements with 6 global node numbers

For instance, for a simple mesh of 5 linear elements with shown global node numbers in figure

3.7.1 , local to global node mapping matrix that will be used in the assembly process is

LtoG =



1 2

2 3

3 4

4 5

5 6


where the third element 3 is between the third 3 node and fourth node 4. The assembly process is

now done with the following assembly rule

i. an elemental stiffness matrix We
ij is assembled into global stiffness matrix WIJ
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ii. an elemental boundary integral vector Zei is assembled into the global boundary integral

vector ZI

iii. an elemental force integral vector Yi is assembled into YI

The assembly process results in the following global stiffness matrix, force integral vector and

boundary integral vector for 6 node mesh.

W=



W1
11 W1

12 0 0 0 0

W1
21 W1

22+W2
11 W2

12 0 0 0

0 W2
21 W2

22+W3
11 W3

12 0 0

0 0 W3
21 W3

22+W4
11 W4

12 0

0 0 0 W4
21 W4

22+W5
11 W5

12

0 0 0 0 W5
21 W5

22+W6
11



,

[Y] =



Y1
1

Y1
2+Y2

1

Y2
2+Y3

1

Y3
2+Y4

1

Y4
2+Y5

1

Y5
2



and [Z] =



Z11

Z12+Z21

Z22+Z31

Z32+Z41

Z42+Z51

Z52


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For the 6 node mesh, global equation system is given by



W1
11 W1

12 0 0 0 0

W1
21 W1

22+W2
11 W2

12 0 0 0

0 W2
21 W2

22+W3
11 W3

12 0 0

0 0 W3
21 W3

22+W4
11 W4

12 0

0 0 0 W4
21 W4

22+W5
11 W5

12

0 0 0 0 W5
21 W5

22+W6
11





f1

f2

f3

f4

f5

f6



=



Y1
1

Y1
2+Y2

1

Y2
2+Y3

1

Y3
2+Y4

1

Y4
2+Y5

1

Y5
2



+



Z11

Z12+Z21

Z22+Z31

Z32+Z41

Z42+Z51

Z52



(3.7.49)

3.7.16 Temperature distribution assembly process

After repeating the procedure for subsection 3.7.15, the assembly process is now done with the

following assembly rule

i. an elemental stiffness matrix Ieij is assembled into global stiffness matrix IIJ

ii. an elemental boundary integral vector Lei is assembled into the global boundary integral

vector LI

iii. an elemental force integral vector Ki is assembled into KI
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The assembly process results in the following global stiffness matrix, force integral vector and

boundary integral vector for 6 node mesh.

I =



I111 I112 0 0 0 0

I121 I122+I211 I212 0 0 0

0 I221 I222+I311 I312 0 0

0 0 I321 I322+I411 I412 0

0 0 0 I421 I422+I511 I512

0 0 0 0 I521 I522+I611



[K] =



K1
1

K1
2+K2

1

K2
2+K3

1

K3
2+K4

1

K4
2+K5

1

K5
2



and [L] =



L11

L12+L21

L22+L31

L32+L41

L42+L51

L52


For the 6 node mesh, global equation system is given by



I111 I112 0 0 0 0

I121 I122+I211 I212 0 0 0

0 I221 I222+I311 I312 0 0

0 0 I321 I322+I411 I412 0

0 0 0 I421 I422+I511 I512

0 0 0 0 I521 I522+I611





h1

h2

h3

h4

h5

h6


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=



K1
1

K1
2+K2

1

K2
2+K3

1

K3
2+K4

1

K4
2+K5

1

K5
2



+



L11

L12+L21

L22+L31

L32+L41

L42+L51

L52



(3.7.50)

3.7.17 Evaluation of boundary conditions for velocity profile

The boundary integral vector [Z] is evaluated only at the boundary nodes of the problem domain,

not at the inner nodes. For the 6 node mesh Z2 = Z3 = Z4 = Z5 = 0. The boundary integral vector

takes the form

[Z] =



Z11

0

0

0

0

Z52


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Taking into account the no-slip condition, Z1 = Z6 = 0, so that the whole boundary integral vector

is a null vector and equation (3.7.49) dwindles to



W1
11 W1

12 0 0 0 0

W1
21 W1

22+W2
11 W2

12 0 0 0

0 W2
21 W2

22+W3
11 W3

12 0 0

0 0 W3
21 W3

22+W4
11 W4

12 0

0 0 0 W4
21 W4

22+W5
11 W5

12

0 0 0 0 W5
21 W5

22+W6
11





f1

f2

f3

f4

f5

f6



=



Y1
1

Y1
2+Y2

1

Y2
2+Y3

1

Y3
2+Y4

1

Y4
2+Y5

1

Y5
2



(3.7.51)

3.7.18 Evaluation of boundary conditions for temperature distribution

The boundary integral vector [L] is evaluated at the boundary nodes of the problem domain. For

the 6 node mesh, L1 = L2 = L3 = L4 = L5 = L6 = � 1
PrI21 since temperature is constant at the
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boundary. Putting values of Li in equation (3.7.50), it turns out to



I111 I112 0 0 0 0

I121 I122+I211 I212 0 0 0

0 I221 I222+I311 I312 0 0

0 0 I321 I322+I411 I412 0

0 0 0 I421 I422+I511 I512

0 0 0 0 I521 I522+I611





h1

h2

h3

h4

h5

h6



=



K1
1

K1
2+K2

1

K2
2+K3

1

K3
2+K4

1

K4
2+K5

1

K5
2



�



1
PrI21

...

...

...

...

...



(3.7.52)

3.7.19 Evaluation of global force vector for velocity profile

From equation (3.7.32), the elemental force vector is given by

Yi = �
∫ 1

�1
siReλθdξ

Re and λθ are constants. Components of elemental force vector are evaluated as under;

Ye
1 = �

∫ 1

�1

1

2
(1� ξ )Reλθdξ = �Reλθ
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Ye
2 = �

∫ 1

�1

1

2
(1+ξ )Reλθdξ = �Reλθ

When the assembly rule is administered, global force vector lessens to

[Y] =



Y1
1

Y1
2+Y2

1

Y2
2+Y3

1

Y3
2+Y4

1

Y4
2+Y5

1

Y5
2



=



�Reλθ

�2Reλθ

�2Reλθ

�2Reλθ

�2Reλθ

�Reλθ



(3.7.53)

Setting equation (3.7.53) in equation (3.7.51), hands out



W1
11 W1

12 0 0 0 0

W1
21 W1

22+W2
11 W2

12 0 0 0

0 W2
21 W2

22+W3
11 W3

12 0 0

0 0 W3
21 W3

22+W4
11 W4

12 0

0 0 0 W4
21 W4

22+W5
11 W5

12

0 0 0 0 W5
21 W5

22+W6
11





f1

f2

f3

f4

f5

f6


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=



�Reλθ

�2Reλθ

�2Reλθ

�2Reλθ

�2Reλθ

�Reλθ



(3.7.54)

3.7.20 Evaluation of global force vector for temperature distribution

From equation (3.7.34), the elemental force vector is given by

Ki = �
∫

Ω

si(τ)τ logτEcHa2f2dξ

Ec and Ha are constants while f which is fluid velocity will be a specific value at a specific node.

Fluid velocity is maximum at the centre of pipe (core velocity Vc) and then diminishes gradually

to zero at the boundary of pipe as is found in velocity profile study results, Gedik et.al [10].

Henceforth, f is denoted f i . The elemental force vector components are evaluated as follows:

From equations (3.7.45) and (3.7.46), considering he = 0.0002,τe1 = 0.0000 and τe2 = 0.0002 then

τ = 0.0001ξ +0.0001 (3.7.55)

so that

Ke
1 = �

∫
Ω

s1(τ)τ logτEcHa2f2i dξ

= �
∫ 1

�1

1

2
(1� ξ )(0.0001ξ +0.0001)log(0.0001ξ +0.0001)EcHa2f2i dξ
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= 0.00062337EcHa2f2i (3.7.56)

Ke
2 = �

∫
Ω

s2(τ)τ logτEcHa2f2i dξ

= �
∫ 1

�1

1

2
(1+ξ )(0.0001ξ +0.0001)log(0.0001ξ +0.0001)EcHa2f2i dξ

= 0.00118007EcHa2f2i (3.7.57)

he take values of 0.0001 ≤ he ≤ 0.0002 while τ take values of 0.005 ≤ he ≤ 0.0001 to obtain

smooth graphs in the results. When the assembly rule is applied utilizing equations (3.7.56) and

(3.7.57), global force vector becomes

[K] =



K1
1

K1
2+K2

1

K2
2+K3

1

K3
2+K4

1

K4
2+K5

1

K5
2



=



0.00062337EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00118007EcHa2f2i



(3.7.58)

Settling equation (3.7.58) in equation (3.7.52), converts it to



I111 I112 0 0 0 0

I121 I122+I211 I212 0 0 0

0 I221 I222+I311 I312 0 0

0 0 I321 I322+I411 I412 0

0 0 0 I421 I422+I511 I512

0 0 0 0 I521 I522+I611





h1

h2

h3

h4

h5

h6


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=



0.00062337EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00118007EcHa2f2i



�



1
PrI21

...

...

...

...

...



(3.7.59)

3.7.21 Reduction of velocity global equation system

The values f1 of the first node and f6 of the last node are known. This leads to reduction in

equation (3.7.54), which is done in two steps namely;

i. deleting the first row and the last row of the whole global equation system.

ii. deleting the first column and last column of stiffness matrix.

After trimming has been done, equation (3.7.54) becomes



W1
22+W2

11 W2
12 0 0

W2
21 W2

22+W3
11 W3

12 0

0 W3
21 W3

22+W4
11 W4

12

0 0 W4
21 W4

22+W5
11





f2

f3

f4

f5


=



�2Reλθ

...

...

...


(3.7.60)

Equation (3.7.60) is the state to be adopted to find approximate solutions to equation (3.6.3), ode.
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3.7.22 Trimming temperature global equation system

The value h1 of the first node and that of the last node h6 are known. This leads to slashing of the

global equation system equation (3.7.59). When reduction is done, equation (3.7.59) becomes



I122+I211 I212 0 0

I221 I222+I311 I312 0

0 I321 I322+I411 I412

0 0 I421 I422+I511





h2

h3

h4

h5



=



0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2f2i

0.00180344EcHa2g2i


�



1
PrI21

...

...

...


(3.7.61)

Equation (3.7.61) is the state to be employed to find approximate solutions to equation (3.6.7),

ode.

3.7.23 Discretization of major axis of elliptical cross section of pipe

The major axis of the elliptical cross section of the pipe is sub divided into N-1 elements and

N nodes as shown in figure 3.7.2. This is for the purpose of facilitating formation of algebraic

equations which will employed to find values of fjs and hjs at each of the nodes by engaging

equations (3.7.60) and (3.7.61) respectively.
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Figure 3.7.2: Discretized major axis of elliptical cross section of pipe

N= 21 for circle and N= 29,33,35 for ellipses.

3.7.24 Calculation of velocity elemental stiffness matrix

Elemental stiffness matrix is evaluated using equations (3.7.40), (3.7.41) and (3.7.43) such that:

Setting he = 0.0002,ηe
1 = 0.0000 and ηe

2 = 0.0002 then η = 0.0001ξ +0.0001 so that equation

(3.7.43) gives

W1
11 = �0.5

∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]3(1 � ξ )dξ

�1.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]4(1 � ξ )dξ

�0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]5(1 � ξ )dξ

+
1

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]4dξ

+
0.5

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]5dξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]3(1 � ξ )2Jedξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]4(1 � ξ )2Jedξ
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+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]5(1 � ξ )2Jedξ

�0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]Ha2(1 � ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)](1 � ξ )2Ha2Jedξ

On integrating and simplifying

W1
11 = 1.02009×10�4+2.03417×10�7Ha2 � 2.99146×10�2Ha2Je � 8.07356×10

�8

Je

�1.28685Je (3.7.62)

Repeating the processes for W1
12,W

1
21 and W1

22 results in

W1
12 = 0.5

∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]3(1 � ξ )dξ

+1.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]4(1 � ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]5(1 � ξ )dξ

�
1

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]4dξ

�
0.5

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]5dξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]3(1 � ξ

2)Jedξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]4(1 � ξ

2)Jedξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]5(1 � ξ

2)Jedξ

68



+0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]Ha2(1 � ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)](1 � ξ

2)Ha2Jedξ

Upon integrating and simplifying

W1
12 = �1.02009×10�4 � 2.03417×10�8Ha2 � 2.52849×10�2Ha2Je+ 8.07356×10�8

Je

�0.889363Je (3.7.63)

W1
21 = �0.5

∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]3(1+ξ )dξ

�1.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]4(1+ξ )dξ

�0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]5(1+ξ )dξ

�
1

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]4dξ

�
0.5

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]5dξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]3(1 � ξ

2)Jedξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]4(1 � ξ

2)Jedξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]5(1 � ξ

2)Jedξ

�0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]Ha2(1+ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)](1 � ξ

2)Ha2Jedξ
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When integration and simplification is done,

W1
21 = �2.39048×10�4+8.76719×10�8Ha2 � 2.52849×10�2Ha2Je+ 8.07352×10�8

Je

�0.889363Je (3.7.64)

W1
22 = 0.5

∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]3(1+ξ )dξ

+1.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]4(1+ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]5(1+ξ )dξ

+
1

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]4dξ

+
0.5

Je

∫ 1

�1
(0.0001ξ +0.0001)3[log(0.0001ξ +0.0001)]5dξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]3(1+ξ )2Jedξ

+1.5
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]4(1+ξ )2Jedξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)]5(1+ξ )2Jedξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)2[log(0.0001ξ +0.0001)]Ha2(1+ξ )dξ

+0.25
∫ 1

�1
(0.0001ξ +0.0001)[log(0.0001ξ +0.0001)](1+ξ )2Ha2Jedξ

Integration and simplification are done and yield

W1
22 = �2.39052×10�4 � 8.17592×10�8Ha2 � 6.75332×10�2Ha2Je � 8.07356×10

�8

Je

�2.0668Je (3.7.65)
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The 2×2 [We] elemental matrix is given by

We =

 W1
11 W1

12

W1
21 W1

22

 (3.7.66)

From now henceforth, whenever equation (3.7.66) is mentioned it means it comprises equations

(3.7.62) to (3.7.65) which are too large to fit in the matrix. When equation (3.7.66) is put in

equation (3.7.60), the solutions of fj’s are obtained for different values of:

i. Ha while keeping λθ ,Re,a and Je constant

ii. λθ while keeping Ha,Re,a and Je fixed

iii. Re while maintaining Ha,Re,λθ ,a and Je

iv. a while preserving Ha,Re,λθ and Je

3.7.25 Calculation of temperature elemental stiffness matrix

Placing equation (3.7.55) in equation (3.7.48), it changes to

I1ij =
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

dsi
dξ

dsj
dξ

1

Je

)
dξ (3.7.67)

Equation (3.7.67) is utilized to find components of the elemental stiffness matrix I111, I
1
12, I

1
21 and

I122 as under:

I111 =
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

ds1
dξ

ds1
dξ

1

Je

)
dξ

=
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

(
�
1

2

)(
�
1

2

)
1

Je

)
dξ
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On integrating and simplifying

I111 =
0.00045086

PrJe
(3.7.68)

I112 =
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

ds1
dξ

ds2
dξ

1

Je

)
dξ

=
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

(
�
1

2

)(
1

2

)
1

Je

)
dξ

Upon integrating and simplifying

I112 = �
0.00045086

PrJe
(3.7.69)

For I121

I121 =
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

ds2
dξ

ds1
dξ

1

Je

)
dξ

=
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

(
1

2

)(
�
1

2

)
1

Je

)
dξ

Integration and simplification results in

I121 = �
0.00045086

PrJe
(3.7.70)

For I122

I122 =
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

ds2
dξ

ds2
dξ

1

Je

)
dξ

=
∫ 1

�1

(
�
1

Pr
(0.0001ξ +0.0001)log(0.0001ξ +0.0001)

(
1

2

)(
1

2

)
1

Je

)
dξ
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Integration and simplification grants

I122 =
0.00045086

PrJe
(3.7.71)

The 2×2, [Ie], elemental matrix is given by

Ie =

 I111 I112

I121 I122

 (3.7.72)

Settling equations (3.7.67) to (3.7.71) in equation (3.7.72), it produces

Ie =


0.00045086

PrJe � 0.00045086PrJe

� 0.00045086PrJe
0.00045086

PrJe

 (3.7.73)

Equation (3.7.73) is used to obtain elemental matrices. On bringing it in equation (3.7.61),

solutions of hj’s are obtained for different values of:

i. Pr while keeping he,Je,a,Ec, f i, and Ha constant.

ii. Ha while preserving Ec,he,Je,a, f i and Pr.

iii. Ec while controlling Ha,he,Je,Pr, f i and a.

iv. f i while maintaining Ha,he,Je,Pr,Ec and a.

v. a while keeping Ha,he,Je,Pr,Ec and f i fixed.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Results and discussion for velocity profile

In computing the value of fj’s, the values of f at the first and last nodes are known and are both

equal to 0.000. From subsection 3.7.13, considering he = 0.0002, then Je = 0.0001. These four

values apply for all the cases worked out in this section.

4.1.1 Varying Hartmann number while controlling gravitational force, dis-

tance of major axis, Reynold’s number and length of elements

(a) Ha= 1.0,Je = 0.0001,λθ = 0.001,Re= 0.5,a= 0.0034

When the above stated values of Ha and Je are put in equation (3.7.66), it produces

We =

 �0.0008368 0.0006139

0.000955 �0.0012599

 (4.1.1)

Using equation (4.1.1), global stiffness matrix W becomes

W=



�0.0008368 0.0006139 0 0 0 0

0.000955 �0.0012599 0.0006139 0 0 0

0 0.000955 �0.0012599 0.0006139 0 0

0 0 0.000955 �0.0012599 0.0006139 0

0 0 0 0.000955 �0.0012599 0.0006139

0 0 0 0 0.000955 �0.0012599


(4.1.2)
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Considering 35 nodes in figure 3.7.2 and then substituting equation (4.1.2), Re and λθ in equation

(3.7.60), it transforms into



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.001

�0.001

�0.001

...

�0.001

�0.001


(4.1.3)

The system of equations formed from equation (4.1.3) are

�0.0012599f2+0.0006139f3 = �0.001 (4.1.4)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.001 (4.1.5)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.001 (4.1.6)

... (4.1.7)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.001 (4.1.8)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.001 (4.1.9)

0.000955f33 � 0.0012599f34 = �0.001 (4.1.10)

Mathematica is used to solve the system of equations (4.1.4) to (4.1.10) and gives solutions of fj’s

as
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Table 4.1.1: Velocities along the major axis when Ha = 1.0

f1 = 0.000 f2 = 0.869 f3 = 1.340 f4 = 1.594 f5 = 1.732
f6 = 1.807 f7 = 1.847 f8 = 1.869 f9 = 1.881 f10 = 1.887
f11 = 1.891 f12 = 1.892 f13 = 1.893 f14 = 1.894 f15 = 1.894
f16 = 1.894 f17 = 1.895 f18 = 1.895 f19 = 1.895 f20 = 1.895
f21 = 1.895 f22 = 1.895 f23 = 1.895 f24 = 1.895 f25 = 1.895
f26 = 1.895 f27 = 1.894 f28 = 1.893 f29 = 1.891 f30 = 1.885
f31 = 1.867 f32 = 1.815 f33 = 1.665 f34 = 1.235 f35 = 0.000

The fj’s are solutions of function f derived from the stream function, ψ , which relates velocities

of fluid in the r�component and θ�components. fj’s will therefore be the velocities of fluid along

the major axis of cross section of elliptical pipe.

(b) Ha= 5.0,Re= 0.5,Je = 0.0001,λθ = 0.001,a= 0.0034

Placing the above stated values of Ha and Je in equation (3.7.66), it turns out to

We =

 �0.0009037 0.0005527

0.0008964 �0.0014240

 (4.1.11)

Utilizing equation (4.1.11), global stiffness matrix W develops to

W=



�0.0009037 0.0005527 0 0 0 0

0.0008964 �0.0023277 0.0005527 0 0 0

0 0.0008964 �0.0023277 0.0005527 0 0

0 0 0.0008964 �0.0023277 0.0005527 0

0 0 0 0.0008964 �0.0023277 0.0005527

0 0 0 0 0.0008964 �0.0023277


(4.1.12)
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Taking into account 35 nodes and then inserting equation (4.1.12), Re and λθ in equation (3.7.60),

it emerges as



�0.0023277 0.0005527 0 0 . . .

0.0008964 �0.0023277 0.0005527 0 . . .

0 0.0008964 �0.0023277 0.0005527
. . .

0 0 0.0008964 �0.0023277
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.001

�0.001

�0.001

...

�0.001

�0.001


(4.1.13)

The structure of equations formed from equation (4.1.13) are

�0.0023277f2+0.0005527f3 = �0.001 (4.1.14)

0.0008964f2 � 0.0023277f3+0.0005527f4 = �0.001 (4.1.15)

0.0008964f3 � 0.0023277f4+0.0005527f5 = �0.001 (4.1.16)

... (4.1.17)

0.0008964f31 � 0.0023277f32+0.0005527f33 = �0.001 (4.1.18)

0.0008964f32 � 0.0023277f33+0.0005527f34 = �0.001 (4.1.19)

0.0008964f33 � 0.0023277f34 = �0.001 (4.1.20)

Algebraic equations (4.1.14) to (4.1.20) are solved by Mathematica which presents solutions of

velocities as
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Table 4.1.2: Velocities along the major axis when Ha = 5.0

f1 = 0.000 f2 = 0.650 f3 = 0.929 f4 = 1.048 f5 = 1.100
f6 = 1.122 f7 = 1.131 f8 = 1.135 f9 = 1.137 f10 = 1.138
f11 = 1.138 f12 = 1.138 f13 = 1.138 f14 = 1.138 f15 = 1.138
f16 = 1.138 f17 = 1.138 f18 = 1.138 f19 = 1.138 f20 = 1.138
f21 = 1.138 f22 = 1.138 f23 = 1.138 f24 = 1.138 f25 = 1.138
f26 = 1.138 f27 = 1.138 f28 = 1.138 f29 = 1.138 f30 = 1.137
f31 = 1.133 f32 = 1.117 f33 = 1.059 f34 = 0.837 f35 = 0.000

(c) Ha= 10.0,Re= 0.5,Je = 0.0001,λθ = 0.001,a= 0.0034

On putting the above stated values of Ha and Je in equation (3.7.66), it changes into

We =

 �0.0011128 0.0003615

0.0007134 �0.0019366

 (4.1.21)

Using equation (4.1.21), global stiffness matrix W gives

W=



�0.0011128 0.0003615 0 0 0 0

0.0007134 �0.0030494 0.0003615 0 0 0

0 0.0007134 �0.0030494 0.0003615 0 0

0 0 0.0007134 �0.0030494 0.0003615 0

0 0 0 0.0007134 �0.0030494 0.0003615

0 0 0 0 0.0007134 �0.0030494


(4.1.22)

Considering 35 nodes and then substituting equation (4.1.22), Re and λθ in equation (3.7.60), it
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turns out to



�0.0030494 0.0003615 0 0 . . .

0.0007134 �0.0030494 0.0003615 0 . . .

0 0.0007134 �0.0030494 0.0003615
. . .

0 0 0.0007134 �0.0030494
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.001

�0.001

�0.001

...

�0.001

�0.001


(4.1.23)

The set of equations formed from equation (4.1.23) are

�0.0030494f2+0.0003615f3 = �0.001 (4.1.24)

0.0007134f2 � 0.0030494f3+0.0003615f4 = �0.001 (4.1.25)

0.0007134f3 � 0.0030494f4+0.0003615f5 = �0.001 (4.1.26)

... (4.1.27)

0.0007134f31 � 0.0030494f32+0.0003615f33 = �0.001 (4.1.28)

0.0007134f32 � 0.0030494f33+0.0003615f34 = �0.001 (4.1.29)

0.0007134f33 � 0.0030494f34 = �0.001 (4.1.30)

Equations (4.1.24) to (4.1.30) are solved by Mathematica which provides solutions of velocities

as
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Table 4.1.3: Velocities along the major axis when Ha = 10.0

f1 = 0.000 f2 = 0.384 f3 = 0.477 f4 = 0.499 f5 = 0.505
f6 = 0.506 f7 = 0.506 f8 = 0.506 f9 = 0.506 f10 = 0.506
f11 = 0.506 f12 = 0.506 f13 = 0.506 f14 = 0.506 f15 = 0.506
f16 = 0.506 f17 = 0.506 f18 = 0.506 f19 = 0.506 f20 = 0.506
f21 = 0.506 f22 = 0.506 f23 = 0.506 f24 = 0.506 f25 = 0.506
f26 = 0.506 f27 = 0.506 f28 = 0.506 f29 = 0.506 f30 = 0.506
f31 = 0.506 f32 = 0.506 f33 = 0.499 f34 = 0.445 f35 = 0.000

Incorporating velocities in tables 4.1.1, 4.1.2 and 4.1.3 deliver the form in figure 4.1.1

Figure 4.1.1: Combined velocity profiles for Ha = 1.0,Ha = 5.0 and Ha = 10.0

Hartmann number, Ha, a dimensionless value, is the ratio of electromagnetic force to the

viscous force, determines the velocity profile for the flow. As the value of Hartmann number

is increased, velocity profile decreases. The effect of the magnetic field is more prominent at

the point of core velocity, Vc i.e Vc decreases with increase in magnetic field. The presence of

magnetic field in an electrically conducting fluid introduces Lorentz force which acts against

the flow. This force slows down the fluid velocity as shown in figure 4.1.1 so that the velocity

becomes almost constant through the pipe. Again the fluid is viscous so that is sticks on the walls

of the pipe so that velocity distribution decreases from the centre of the pipe to the edges. Using

different set ups, Gedik et.al [10], Nazibuddin and Dutta [27] and Kiema et.al [28] also found
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that increase in Hartmann number leads to retardation of fluid velocity. Prasanna and Ganesh [17]

investigation divulged that velocity profile was flat in the core region of the pipe, this is also the

case as indicated in figure 4.1.1. One of the conclusions drawn by Gedik et.al [10] who examined

a circular pipe was presented in graphical form shown in figure 4.1.2 where B was magnetic flux

density while R was radius of circular pipe.

Figure 4.1.2: Velocity form along diameter of pipe when B = 0,B = 0.5,B = 1.0 and B = 1.5

The velocity profile for circular pipe figure 4.1.2 are almost similar to those found in this

research for a pipe of elliptical cross section in figure 4.1.1. The only difference is that in figure

4.1.2, the shapes are parabolic while in figure 4.1.1 they are almost rectangular.

4.1.2 Altering gravitational force while preserving Hartmann number ,

distance of major axis, Reynolds number and length of elements

(i) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.00002,a= 0.0034

The above stated values of Ha and Je are put in equation (3.7.66). It produces form which is same

as equation (4.1.1). Using equation (4.1.1), global stiffness matrix W, will be equal to equation

(4.1.2). Considering 35 nodes in figure 3.7.2 and then substituting equation (4.1.2), Re and λθ in
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equation (3.7.60), it changes to



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.00002

�0.00002

�0.00002

...

�0.00002

�0.00002


(4.1.31)

The collection of equations formed from equation (4.1.31) are

�0.0012599f2+0.0006139f3 = �0.00002 (4.1.32)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.00002 (4.1.33)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.00002 (4.1.34)

... (4.1.35)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.00002 (4.1.36)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.00002 (4.1.37)

0.000955f33 � 0.0012599f34 = �0.00002 (4.1.38)

Mathematica is used to solve equations (4.1.32) to (4.1.38) and conveys solutions of fj’s as
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Table 4.1.4: Velocities along the major axis for λθ = 0.00002

f1 = 0.000 f2 = 0.017 f3 = 0.027 f4 = 0.032 f5 = 0.035
f6 = 0.036 f7 = 0.037 f8 = 0.037 f9 = 0.038 f10 = 0.038
f11 = 0.038 f12 = 0.038 f13 = 0.038 f14 = 0.038 f15 = 0.038
f16 = 0.038 f17 = 0.038 f18 = 0.038 f19 = 0.038 f20 = 0.038
f21 = 0.038 f22 = 0.038 f23 = 0.038 f24 = 0.038 f25 = 0.038
f26 = 0.038 f27 = 0.038 f28 = 0.038 f29 = 0.038 f30 = 0.038
f31 = 0.037 f32 = 0.036 f33 = 0.033 f34 = 0.025 f35 = 0.000

(ii) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.00004,a= 0.0034

When the above stated values of Ha and Je are put in equation (3.7.66), it will be the same as

equation (4.1.1) since the specifications are equal. Effecting equation (4.1.1), global stiffness

matrix W becomes the same as equation (4.1.2). Taking into account 35 nodes and then substituting

equation (4.1.2), Re and λθ in equation (3.7.60), it grows into



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.00004

�0.00004

�0.00004

...

�0.00004

�0.00004


(4.1.39)
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The system of equations formed from equation (4.1.39) are

�0.0012599f2+0.0006139f3 = �0.00004 (4.1.40)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.00004 (4.1.41)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.00004 (4.1.42)

... (4.1.43)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.00004 (4.1.44)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.00004 (4.1.45)

0.000955f33 � 0.0012599f34 = �0.00004 (4.1.46)

Mathematica conveys values in table 4.1.5 when engaged to solve equations (4.1.40) to (4.1.46).

Table 4.1.5: Velocities along the major axis for λθ = 0.00004

f1 = 0.000 f2 = 0.034 f3 = 0.054 f4 = 0.064 f5 = 0.069
f6 = 0.072 f7 = 0.074 f8 = 0.075 f9 = 0.075 f10 = 0.075
f11 = 0.076 f12 = 0.076 f13 = 0.076 f14 = 0.076 f15 = 0.076
f16 = 0.076 f17 = 0.076 f18 = 0.076 f19 = 0.076 f20 = 0.076
f21 = 0.076 f22 = 0.076 f23 = 0.076 f24 = 0.076 f25 = 0.076
f26 = 0.076 f27 = 0.076 f28 = 0.076 f29 = 0.076 f30 = 0.076
f31 = 0.075 f32 = 0.073 f33 = 0.067 f34 = 0.049 f35 = 0.000

(iii) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.00008,a= 0.0034

On placing the above stated values of Ha and Je in equation (3.7.66), it will be the same as

equation (4.1.1) since the criterion is the same. Utilizing equation (4.1.1), global stiffness matrix

W develop into the same form as equation (4.1.2). Incorporating 35 nodes and then substituting
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equation (4.1.2), Re, and λθ in equation (3.7.60), it turns out to



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.00008

�0.00008

�0.00008

...

�0.00008

�0.00008


(4.1.47)

The set of equations formed from equation (4.1.47) are

�0.0012599f2+0.0006139f3 = �0.00008 (4.1.48)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.00008 (4.1.49)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.00008 (4.1.50)

... (4.1.51)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.00008 (4.1.52)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.00008 (4.1.53)

0.000955f33 � 0.0012599f34 = �0.00008 (4.1.54)

Mathematica is manipulated to solve equations (4.1.48) to (4.1.54) and dispenses solutions as
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Table 4.1.6: Velocities along the major axis for λθ = 0.00008

f1 = 0.000 f2 = 0.069 f3 = 0.107 f4 = 0.128 f5 = 0.139
f6 = 0.145 f7 = 0.148 f8 = 0.150 f9 = 0.150 f10 = 0.151
f11 = 0.151 f12 = 0.151 f13 = 0.151 f14 = 0.151 f15 = 0.151
f16 = 0.151 f17 = 0.151 f18 = 0.151 f19 = 0.151 f20 = 0.151
f21 = 0.151 f22 = 0.151 f23 = 0.151 f24 = 0.151 f25 = 0.151
f26 = 0.151 f27 = 0.151 f28 = 0.151 f29 = 0.151 f30 = 0.151
f31 = 0.149 f32 = 0.145 f33 = 0.133 f34 = 0.099 f35 = 0.000

Putting together velocities in table 4.1.4, table 4.1.5 and table 4.1.6 gives

Figure 4.1.3: Merged velocity profiles for λθ = 0.00002,λθ = 0.00004 and λθ = 0.00008

Increase in gravitational force leads to increase in fluid velocity at the centre of ellipse. The

velocity decreases towards the edges of the pipe and is zero at the boundary so that the solution

satisfies the no-slip boundary condition, figure 4.1.3. Increase in potential energy leads to increase

in kinetic energy which increases velocity.

4.1.3 Modifying Reynolds number while keeping Hartmann number, grav-

itational force, distance of major axis and length of elements fixed

(i) Ha= 1.0,Re= 2.0,Je = 0.0001,λθ = 0.0005,a= 0.0034

Once the above stated values of Ha and Je are placed in equation (3.7.66), it produces form which
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is same as equation (4.1.1). Employing equation (4.1.1), global stiffness matrix W be equal to

equation (4.1.2). Taking into account 35 nodes in figure 3.7.2 and then substituting equation

(4.1.2), Re and λθ in equation (3.7.60), it changes to



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.002

�0.002

�0.002

...

�0.002

�0.002


(4.1.55)

The algebraic equations formed from equation (4.1.55) are

�0.0012599f2+0.0006139f3 = �0.002 (4.1.56)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.002 (4.1.57)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.002 (4.1.58)

... (4.1.59)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.002 (4.1.60)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.002 (4.1.61)

0.000955f33 � 0.0012599f34 = �0.002 (4.1.62)

Mathematica is used to solve the set of equations (4.1.56) to (4.1.62) and conveys solutions of fj’s

as
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Table 4.1.7: Velocities along the major axis with Re = 2.0

f1 = 0.000 f2 = 1.738 f3 = 2.679 f4 = 3.188 f5 = 3.464
f6 = 3.613 f7 = 3.694 f8 = 3.738 f9 = 3.761 f10 = 3.774
f11 = 3.781 f12 = 3.785 f13 = 3.787 f14 = 3.788 f15 = 3.789
f16 = 3.789 f17 = 3.789 f18 = 3.789 f19 = 3.789 f20 = 3.789
f21 = 3.789 f22 = 3.789 f23 = 3.789 f24 = 3.789 f25 = 3.789
f26 = 3.789 f27 = 3.789 f28 = 3.787 f29 = 3.783 f30 = 3.770
f31 = 3.733 f32 = 3.630 f33 = 3.331 f34 = 2.471 f35 = 0.000

(ii) Ha= 1.0,Re= 4.0,Je = 0.0001,λθ = 0.0005,a= 0.0034

On setting the above stated values of Ha and Je in equation (3.7.66), it will be the same as

equation (4.1.1) since the restrictions are equal. Utilizing equation (4.1.1), global stiffness matrix

W becomes the same as equation (4.1.2). On considering 35 nodes and then substituting equation

(4.1.2), Re and λθ in equation (3.7.60), it delivers



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.004

�0.004

�0.004

...

�0.004

�0.004


(4.1.63)
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The collection of equations formed from equation (4.1.63) are

�0.0012599f2+0.0006139f3 = �0.004 (4.1.64)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.004 (4.1.65)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.004 (4.1.66)

... (4.1.67)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.004 (4.1.68)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.004 (4.1.69)

0.000955f33 � 0.0012599f34 = �0.004 (4.1.70)

Mathematica provides values in table 4.1.8 when employed to solve equations (4.1.64) to (4.1.70).

Table 4.1.8: Velocities along the major axis with Re = 4.0

f1 = 0.000 f2 = 3.477 f3 = 5.358 f4 = 6.377 f5 = 6.928
f6 = 7.227 f7 = 7.388 f8 = 7.476 f9 = 7.523 f10 = 7.548
f11 = 7.562 f12 = 7.570 f13 = 7.574 f14 = 7.576 f15 = 7.577
f16 = 7.578 f17 = 7.578 f18 = 7.578 f19 = 7.579 f20 = 7.579
f21 = 7.579 f22 = 7.579 f23 = 7.579 f24 = 7.579 f25 = 7.578
f26 = 7.578 f27 = 7.577 f28 = 7.574 f29 = 7.565 f30 = 7.540
f31 = 7.468 f32 = 7.259 f33 = 6.661 f34 = 4.942 f35 = 0.000

(iii) Ha= 1.0,Re= 8.0,Je = 0.0001,λθ = 0.0005,a= 0.0034

When the aforementioned values of Ha and Je are set in equation (3.7.66), it will be the same

as equation (4.1.1) since the constants are the same. Effecting equation (4.1.1), global stiffness

matrix W transforms into the same form as equation (4.1.2). Incorporating 35 nodes and then
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substituting equation (4.1.2), Re, and λθ in equation (3.7.60), it turns to



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f33

f34



=



�0.008

�0.008

�0.008

...

�0.008

�0.008


(4.1.71)

The set of equations formed from equation (4.1.71) are

�0.0012599f2+0.0006139f3 = �0.008 (4.1.72)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.008 (4.1.73)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.008 (4.1.74)

... (4.1.75)

0.000955f31 � 0.0012599f32+0.0006139f33 = �0.008 (4.1.76)

0.000955f32 � 0.0012599f33+0.0006139f34 = �0.008 (4.1.77)

0.000955f33 � 0.0012599f34 = �0.008 (4.1.78)

Mathematica is used to solve equations (4.1.72) to (4.1.78) and hands out solutions as
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Table 4.1.9: Velocities along the major axis with Re = 8.0

f1 = 0.000 f2 = 6.953 f3 = 10.717 f4 = 12.754 f5 = 13.856
f6 = 14.453 f7 = 14.776 f8 = 14.951 f9 = 15.056 f10 = 15.097
f11 = 15.125 f12 = 15.140 f13 = 15.148 f14 = 15.152 f15 = 15.154
f16 = 15.156 f17 = 15.156 f18 = 15.157 f19 = 15.157 f20 = 15.157
f21 = 15.157 f22 = 15.157 f23 = 15.157 f24 = 15.157 f25 = 15.157
f26 = 15.156 f27 = 15.154 f28 = 15.148 f29 = 15.130 f30 = 15.080
f31 = 14.935 f32 = 14.519 f33 = 13.322 f34 = 9.884 f35 = 0.000

Bringing together velocities in table 4.1.7, table 4.1.8 and table 4.1.9 produces the figuration

in figure 4.1.4.

Figure 4.1.4: Linked velocity contours for Re = 2.0,Re = 4.0 and Re = 8.0

Reynolds number, Re, the ratio of inertial forces to viscous forces within a fluid, is also

dimensionless quantity. It is used to predict transition from laminar to turbulent flow. Laminar

flow occur at low Reynolds numbers where viscous forces are dominant and is characterized by

smooth fluid motion (Re≤ 2300). Turbulent flow occur at high Reynolds number (Re≥ 2900)

and is dominated by inertial forces which produce chaotic eddies. From figure 4.1.4 when Re

is increased, velocity increases at the centre of pipe and then decreases towards the edges of the

pipe. This because the inertial forces overshadow viscous forces. Usman et.al [16], embracing a

different set up reported that increase in Reynolds number results in increase in fluid temperature.

In this study, increase in Reynolds number increases velocity which in turn increases temperature.
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Even with low values of Reynolds number such as 2.0 , some level of turbulence sets in. Major

axis of pipe of elliptical cross section has its centre of symmetry at the origin. It is therefore

expected that velocities f2 = f34, f7 = f29 etc. However, from table 4.1.10 (numerals extracted

from tables 4.1.7, 4.1.8 and 4.1.9) this is not the case. When Reynolds number is increased from

4.0 to 8.0, absolute difference increases by 100%. This is evidence that turbulence is setting in.

Fluid flow is gradually changing from laminar flow to turbulent flow.

Table 4.1.10: Absolute differences for f7 and f29 when Re = 2.0,4.0,8.0

Re f7 f29 |f7 � f29|
2.0 3.694 3.783 0.0089
4.0 7.388 7.565 0.177
8.0 14.776 15.130 0.354

4.1.4 Changing distance of major axis while maintaining Hartmann num-

ber, gravitational force, Reynolds number and length of elements

fixed

Varying length of major axis of the pipe entails increasing the number of nodal points while

keeping the element length constant. Consideration will be done for 21, 29 and 33 nodes so that

a = 0.0020,a = 0.0028 and a = 0.0032 respectively. When half major axis a = 0.002 and half

minor axis b = 0.002, circular cross section forms. When a = 0.0028,0.0032, while half minor

axis remains constant, b = 0.002, as shown in figure 4.1.5, elliptical cross sections are formed.
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Figure 4.1.5: Change of cross section area of pipe from circular to elliptical.

Aspect ratio, α = a
b , increases i.e 1≤ α ≤ 1.6.

(I) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.025,a= 0.002

When the above mentioned values of Ha and Je are placed in equation (3.7.66), it produces form

which is same as equation (4.1.1). Using equation (4.1.1), global stiffness matrix W be equal

to equation (4.1.2). Taking into account 21 nodes in figure 3.7.2 and then substituting equation

(4.1.2), Re and λθ in equation (3.7.60), it becomes



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f19

f20



=



�0.025

�0.025

�0.025

...

�0.025

�0.025


(4.1.79)
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The group of equations formed from equation (4.1.79) are

�0.0012599f2+0.0006139f3 = �0.025 (4.1.80)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.025 (4.1.81)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.025 (4.1.82)

... (4.1.83)

0.000955f17 � 0.0012599f18+0.0006139f19 = �0.025 (4.1.84)

0.000955f18 � 0.0012599f19+0.0006139f20 = �0.025 (4.1.85)

0.000955f19 � 0.0012599f20 = �0.025 (4.1.86)

Applying Mathematica to solve algebraic equations (4.1.80) to (4.1.86) conveys solutions of fj’s

as

Table 4.1.11: Velocities along the major axis when a = 0.002

f1 = 0.000 f2 = 21.729 f3 = 33.490 f4 = 39.856 f5 = 43.301
f6 = 45.166 f7 = 46.176 f8 = 46.722 f9 = 47.017 f10 = 47.177
f11 = 47.263 f12 = 47.308 f13 = 47.326 f14 = 47.321 f15 = 47.274
f16 = 47.120 f17 = 46.670 f18 = 45.370 f19 = 41.632 f20 = 30.886
f21 = 0.000 � � � �

(II) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.025,a= 0.0028

On putting the above stated values of Ha and Je in equation (3.7.66), it will be the same as

equation (4.1.1) since the criterion is the same. Using equation (4.1.1), global stiffness matrix

W becomes the same as equation (4.1.2). Considering 29 nodes and then substituting equation
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(4.1.2), Re and λθ in equation (3.7.60), it converts to



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f27

f28



=



�0.025

�0.025

�0.025

...

�0.025

�0.025


(4.1.87)

The system of equations formed from equation (4.1.87) are

�0.0012599f2+0.0006139f3 = �0.025 (4.1.88)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.025 (4.1.89)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.025 (4.1.90)

... (4.1.91)

0.000955f25 � 0.0012599f26+0.0006139f27 = �0.025 (4.1.92)

0.000955f26 � 0.0012599f27+0.0006139f28 = �0.025 (4.1.93)

0.000955f27 � 0.0012599f28 = �0.025 (4.1.94)

When Mathematica is manipulated to solve the group of equations (4.1.88) to (4.1.94), it delivers

solutions of velocities as
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Table 4.1.12: Velocities along the major axis when a = 0.0028

f1 = 0.000 f2 = 21.729 f3 = 33.490 f4 = 39.856 f5 = 43.301
f6 = 45.166 f7 = 46.176 f8 = 46.722 f9 = 47.018 f10 = 47.178
f11 = 47.264 f12 = 47.311 f13 = 47.337 f14 = 47.350 f15 = 47.358
f16 = 47.362 f17 = 47.364 f18 = 47.365 f19 = 47.364 f20 = 47.362
f21 = 47.356 f22 = 47.337 f23 = 47.282 f24 = 47.125 f25 = 46.672
f26 = 45.371 f27 = 41.632 f28 = 30.886 f29 = 0.000 �

(III) Ha= 1.0,Re= 0.5,Je = 0.0001,λθ = 0.025,a= 0.0032

On assigning the above mentioned values of Ha and Je in equation (3.7.66), it will be the same as

equation (4.1.1) since the parameters are the same. Effecting equation (4.1.1), global stiffness

matrix W transforms into the same form as equation (4.1.2). Incorporating 33 nodes and then

substituting equation (4.1.2), Re, and λθ in equation (3.7.60), it produces



�0.0012599 0.0006139 0 0 . . .

0.000955 �0.0012599 0.0006139 0 . . .

0 0.000955 �0.0012599 0.0006139
. . .

0 0 0.000955 �0.0012599
. . .

...
... . . . . . . . . .





f2

f3

f4

...

f31

f32



=



�0.025

�0.025

�0.025

...

�0.025

�0.025


(4.1.95)
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The set of equations formed from equation (4.1.95) are

�0.0012599f2+0.0006139f3 = �0.025 (4.1.96)

0.000955f2 � 0.0012599f3+0.0006139f4 = �0.025 (4.1.97)

0.000955f3 � 0.0012599f4+0.0006139f5 = �0.025 (4.1.98)

... (4.1.99)

0.000955f29 � 0.0012599f30+0.0006139f31 = �0.025 (4.1.100)

0.000955f30 � 0.0012599f31+0.0006139f32 = �0.025 (4.1.101)

0.000955f31 � 0.0012599f32 = �0.025 (4.1.102)

On engaging Mathematica to solve algebraic equations (4.1.96) to (4.1.102), it provides solutions

of velocities as

Table 4.1.13: Velocities along the major axis when a = 0.0032

f1 = 0.000 f2 = 21.729 f3 = 33.490 f4 = 39.856 f5 = 43.301
f6 = 45.166 f7 = 46.176 f8 = 46.722 f9 = 47.018 f10 = 47.178
f11 = 47.264 f12 = 47.311 f13 = 47.337 f14 = 47.350 f15 = 47.358
f16 = 47.362 f17 = 47.364 f18 = 47.365 f19 = 47.366 f20 = 47.366
f21 = 47.366 f22 = 47.366 f23 = 47.365 f24 = 47.363 f25 = 47.356
f26 = 47.337 f27 = 47.282 f28 = 47.125 f29 = 46.672 f30 = 45.371
f31 = 41.632 f32 = 30.886 f33 = 0.000 � �

Constructing together velocities in table 4.1.11, table 4.1.12 and table 4.1.13 delivers the

sketch in figure 4.1.6.
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Figure 4.1.6: Combined velocity forms for a = 0.0020,a = 0.0028 and a = 0.0032

On increasing the distance of the major axis (increasing aspect ratio), the velocity of the

fluid at the origin of the pipe also increases marginally. The velocity almost become constant

with most of fluid particles acquiring velocity close to that of the core, Vc. The velocity again

decreases from the centre of the pipe towards the boundary where it is zero, figure 4.1.6. As the

magnetic field strength is kept constant, it means that Lorentz force acting on each conducting

particle reduces leading to increase in velocity. When aspect ratio is increased, cross section of

pipe changes from circular to elliptical. The velocity profiles as shown in figure 4.1.6 changes

from parabolic to almost rectangular shape. This shows that there is more torque at the curved

surface of the elliptical pipe, Moffatt [8], than the circular pipe. It is this torque which makes fluid

velocity to rise faster from the edges towards the centre in the elliptical pipe than circular pipe.

4.2 Results and discussion for temperature distribution

The values of h for the first and last nodes of the discretized length of major axis are known

and are h1 = hN = 0.000. This criterion will be implied in this sector. In working out results

for different values of dimensionless quantities Pr,Ha and Ec, fluid velocity is maximum at the

centre of pipe, core velocity
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( Vc), as found in subsection 4.1. Fluid velocity then decreases from the centre of pipe towards the

edges as shown in table 4.1.1. Values in table 4.1.1 will be adopted in finding hi’s in subsections

4.2.1, 4.2.2 and 4.2.3. In this particular table, Vc = 1.895.

4.2.1 Changing Prandtl number while keeping Hartmann number, Eckert

number, velocity of fluid, distance of major axis and length of ele-

ments constant

(a) Ha= 1.0,Je = 0.0001,Pr= 0.5,a= 0.0034,Ec= 1.0,Vc = 1.895

When the above stated values of Pr and Je are put in equation (3.7.73), it becomes

Ie =

 9.017 �9.017

�9.017 9.017

 (4.2.1)

Using equation (4.2.1), global stiffness matrix I becomes

I =



9.017 �9.017 0 0 0 0

�9.017 18.034 �9.017 0 0 0

0 �9.017 18.034 �9.017 0 0

0 0 �9.017 18.034 �9.017 0

0 0 0 �9.017 18.034 �9.017

0 0 0 0 �9.017 18.034



(4.2.2)

Considering 35 nodes in figure 3.7.2, substituting parameters Ha,Ec, f i (table 4.1.1) and equation

(4.2.2) in equation (3.7.61) results in
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

18.034 �9.017 0 0 . . .

�9.017 18.034 �9.017 0 . . .

0 �9.017 18.034 �9.017
. . .

0 0 �9.017 18.034
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



18.035

18.037

18.039

...

18.039

18.037



(4.2.3)

The system of equations formed from equation (4.2.3) are

18.034h2 � 9.01h3 = 18.035 (4.2.4)

�9.01h2+18.034h3 � 9.01h4 = 18.037 (4.2.5)

�9.01h3+18.034h4 � 9.01h5 = 18.039 (4.2.6)

... (4.2.7)

�9.01h31+18.034h32 � 9.01h33 = 18.040 (4.2.8)

�9.01h32+18.034h33 � 9.01h34 = 18.039 (4.2.9)

�9.01h33+18.034h34 = 18.037 (4.2.10)

Mathematica is used to solve the system of equations (4.2.4) to (4.1.10) and give solutions of hj’s

as
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Table 4.2.1: Temperatures along the major axis for Pr = 0.5

h1 = 0.000 h2 = 33.010 h3 = 64.020 h4 = 93.029 h5 = 120.039
h6 = 145.046 h7 = 168.054 h8 = 189.061 h9 = 208.068 h10 = 225.073
h11 = 240.078 h12 = 253.083 h13 = 264.068 h14 = 273.089 h15 = 280.092
h16 = 285.093 h17 = 288.095 h18 = 289.095 h19 = 288.095 h20 = 285.094
h21 = 280.092 h22 = 273.090 h23 = 264.087 h24 = 253.083 h25 = 240.079
h26 = 225.074 h27 = 208.068 h28 = 189.062 h29 = 168.055 h30 = 145.047
h31 = 120.039 h32 = 93.030 h33 = 64.021 h34 = 33.011 h35 = 0.000

The hj’s are solutions of function h derived from the temperature function which relates tem-

peratures of fluid in the r�component and θ�components. hj’s will therefore be the temperatures

of fluid on the major axis of cross section of elliptical pipe when plotted against the nodes which

are actually points on the major axis of the pipe.

(b) Ha= 1.0,Je = 0.0001,Pr= 1.0,a= 0.0034,Ec= 1.0,Vc = 1.895

Setting the above mentioned values of Pr and Je in equation (3.7.73), leads to

Ie =

 4.509 �4.509

�4.509 4.509

 (4.2.11)
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Employing equation (4.2.11), global stiffness matrix I turns out to

I =



4.509 �4.509 0 0 0 0

�4.509 9.018 �4.509 0 0 0

0 �4.509 9.018 �4.509 0 0

0 0 �4.509 9.018 �4.509 0

0 0 0 �4.509 9.018 �4.509

0 0 0 0 �4.509 9.018



(4.2.12)

Taking into account 35 nodes in figure 3.7.2, substituting values Ha,Ec, f i (table 4.1.1) and

equation (4.2.12) in equation (3.7.61), results in



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.510

4.512

4.514

...

4.514

4.512



(4.2.13)
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The structure of equations formed from equation (4.2.13) are

9.018h2 � 4.509h3 = 4.510 (4.2.14)

�4.509h2+9.018h3 � 4.509h4 = 4.512 (4.2.15)

�4.509h3+9.018h4 � 4.509h5 = 4.514 (4.2.16)

... (4.2.17)

�4.509h31+9.018h32 � 4.509h33 = 4.515 (4.2.18)

�4.509h32+9.018h33 � 4.509h34 = 4.514 (4.2.19)

�4.509h33+9.018h34 = 4.512 (4.2.20)

Mathematica is manipulated to solve the system of equations (4.2.14) to (4.2.20) and delivers

solutions of hj’s as

Table 4.2.2: Temperatures along the major axis for Pr = 1.0

h1 = 0.000 h2 = 16.520 h3 = 32.039 h4 = 46.558 h5 = 60.076
h6 = 72.593 h7 = 84.108 h8 = 94.622 h9 = 104.135 h10 = 112.646
h11 = 120.157 h12 = 126.665 h13 = 132.173 h14 = 136.679 h15 = 140.183
h16 = 142.687 h17 = 144.189 h18 = 144.690 h19 = 144.189 h20 = 142.687
h21 = 140.184 h22 = 136.679 h23 = 132.174 h24 = 126.666 h25 = 120.158
h26 = 112.648 h27 = 104.137 h28 = 94.624 h29 = 84.110 h30 = 72.595
h31 = 60.078 h32 = 46.561 h33 = 32.041 h34 = 16.521 h35 = 0.000

(c) Ha= 1.0,Je = 0.0001,Pr= 2.0,a= 0.0034,Ec= 1.0,Vc = 1.895
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Placing the aforementioned values of Pr and Je in equation (3.7.73), transforms to

Ie =

 2.254 �2.254

�2.254 2.254

 (4.2.21)

Effecting equation (4.2.21), global stiffness matrix I converts to

I =



2.254 �2.254 0 0 0 0

�2.254 4.508 �2.254 0 0 0

0 �2.254 4.508 �2.254 0 0

0 0 �2.254 4.508 �2.254 0

0 0 0 �2.254 4.508 �2.254

0 0 0 0 �2.254 4.508



(4.2.22)

Upon considering 35 nodes in figure 3.7.2, substituting parameters Ha,Ec, f i (table 4.1.1) and

equation (4.2.22) in equation (3.7.61), grants



4.508 �2.254 0 0 . . .

�2.254 4.508 �2.254 0 . . .

0 �2.254 4.508 �2.254
. . .

0 0 �2.254 4.508
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



1.128

1.130

1.132

...

1.132

1.130



(4.2.23)
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The set of equations formed from equation (4.2.23) are

4.508h2 � 2.254h3 = 1.128 (4.2.24)

�2.254h2+4.508h3 � 2.254h4 = 1.130 (4.2.25)

�2.254h3+4.508h4 � 2.254h5 = 1.132 (4.2.26)

... (4.2.27)

�2.254h31+4.508h32 � 2.254h33 = 1.133 (4.2.28)

�2.254h32+4.508h33 � 2.254h34 = 1.132 (4.2.29)

�2.254h33+4.508h34 = 1.130 (4.2.30)

Mathematica is utilized to solve the system of equations (4.2.24) to (4.2.30) and provides solutions

of hj’s as

Table 4.2.3: Temperatures along the major axis for Pr = 2.0

h1 = 0.000 h2 = 8.286 h3 = 16.075 h4 = 23.363 h5 = 30.149
h6 = 36.433 h7 = 42.214 h8 = 47.492 h9 = 52.657 h10 = 56.540
h11 = 60.311 h12 = 63.578 h13 = 66.343 h14 = 68.605 h15 = 70.365
h16 = 71.622 h17 = 72.376 h18 = 72.628 h19 = 72.377 h20 = 71.623
h21 = 70.367 h22 = 68.608 h23 = 66.346 h24 = 63.582 h25 = 60.314
h26 = 56.546 h27 = 52.272 h28 = 47.497 h29 = 42.220 h30 = 36.439
h31 = 30.156 h32 = 23.371 h33 = 16.082 h34 = 8.292 h35 = 0.000

Fusing temperatures in tables 4.2.1, 4.2.2 and 4.2.3 gives form in figure 4.2.1.
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Figure 4.2.1: Combined temperature distributions for Pr = 0.5,Pr = 1.0 and Pr = 2.0

Prandtl number, Pr, a dimensionless number which is the ratio of momentum diffusivity to

thermal diffusivity determines the temperature distribution for the flow. It is observed that when

Prandtl number is increased by 100% i.e Pr = 0.5 to Pr = 1.0 or Pr = 1.0 to Pr = 2.0, core

temperature decreases by 50%. This also applies to the rest of values apart from the values at

the first and last nodes which are zero. This is because the fluid has the ability to transport the

momentum faster through the fluid as compared to the heat transfer by conduction as shown

in figure 4.2.1. This means that convection dominates over conduction. The effect of Prandtl

number is more pronounced at the core temperature. For a given value of Prandtl number,

temperature is maximum at the centre of pipe and minimum at the boundary. Using a different

arrangement, Dipjyoti et.al [15] affirmed contrary i.e increase in Prandtl numbers result in increase

in temperature of the flow. On the other hand, in the research done by Anwar et.al [29], using

also different set up, they found that increase in Prandtl number, resulted in decline in fluid

temperature.
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4.2.2 Diversifying Hartmann number while keeping Prandtl number, Eck-

ert number, distance of major axis, velocity of fluid and length of

elements fixed

(i) Ha= 5.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 1.895

Inserting the above stated values of Pr and Je in equation (3.7.73), it hands out

Ie =

 4.509 �4.509

�4.509 4.509

 (4.2.31)

Effecting equation (4.2.31), global stiffness matrix I turns out to

I =



4.509 �4.509 0 0 0 0

�4.509 9.018 �4.509 0 0 0

0 �4.509 9.018 �4.509 0 0

0 0 �4.509 9.018 �4.509 0

0 0 0 �4.509 9.018 �4.509

0 0 0 0 �4.509 9.018



(4.2.32)

When 35 nodes are considered, replacing values of Ha,Ec, f i (table 4.1.1) and equation (4.2.32)
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in equation (3.7.61), it metamorphoses to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.543

4.590

4.624

...

4.634

4.598



(4.2.33)

The structure of equations formed from equation (4.2.33) are

9.018h2 � 4.509h3 = 4.543 (4.2.34)

�4.509h2+9.018h3 � 4.509h4 = 4.590 (4.2.35)

�4.509h3+9.018h4 � 4.509h5 = 4.624 (4.2.36)

... (4.2.37)

�4.509h31+9.018h32 � 4.509h33 = 4.658 (4.2.38)

�4.509h32+9.018h33 � 4.509h34 = 4.634 (4.2.39)

�4.509h33+9.018h34 = 4.598 (4.2.40)

The algebraic equations (4.2.34) to (4.2.40) are solved by Mathematica which presents solutions

as
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Table 4.2.4: Temperatures along the major axis when Ha = 5.0

h1 = 0.000 h2 = 17.026 h3 = 33.045 h4 = 48.045 h5 = 62.021
h6 = 74.966 h7 = 86.878 h8 = 97.757 h9 = 107.600 h10 = 116.408
h11 = 124.181 h12 = 130.918 h13 = 136.619 h14 = 141.284 h15 = 144.913
h16 = 147.506 h17 = 149.063 h18 = 149.585 h19 = 149.070 h20 = 147.520
h21 = 144.933 h22 = 141.311 h23 = 136.652 h24 = 130.958 h25 = 124.228
h26 = 116.462 h27 = 107.660 h28 = 97.822 h29 = 86.948 h30 = 75.039
h31 = 62.094 h32 = 48.114 h33 = 33.101 h34 = 17.060 h35 = 0.000

(ii) Ha= 20.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 1.895

Upon putting the above mentioned values of Pr and Je in equation (3.7.73), it will be the same as

equation (4.2.31) since constants are the same. Using equation (4.2.31), global stiffness matrix

I becomes the same as equation (4..2.32). On considering 35 nodes, substituting parameters

Ha,Ec, f i (table 4.1.1) and equation (4.2.32) in equation (3.7.61), leads to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



5.054

5.804

6.342

...

6.509

5.609



(4.2.41)
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Collection of equations formed from equation (4.2.41) are

9.018h2 � 4.509h3 = 5.054 (4.2.42)

�4.509h2+9.018h3 � 4.509h4 = 5.804 (4.2.43)

�4.509h3+9.018h4 � 4.509h5 = 6.342 (4.2.44)

... (4.2.45)

�4.509h31+9.018h32 � 4.509h33 = 6.885 (4.2.46)

�4.509h32+9.018h33 � 4.509h34 = 6.509 (4.2.47)

�4.509h33+9.018h34 = 5.609 (4.2.48)

Equations (4.2.42) to (4.2.48) are solved by Mathematica which procure solutions of hj’s as

Table 4.2.5: Temperatures along the major axis when Ha = 20.0

h1 = 0.000 h2 = 24.911 h3 = 48.701 h4 = 71.204 h5 = 92.301
h6 = 111.917 h7 = 130.012 h8 = 146.560 h9 = 161.550 h10 = 174.973
h11 = 186.827 h12 = 197.109 h13 = 205.818 h14 = 212.954 h15 = 218.516
h16 = 222.503 h17 = 224.917 h18 = 225.757 h19 = 225.022 h20 = 222.713
h21 = 218.829 h22 = 213.371 h23 = 206.338 h24 = 197.731 h25 = 187.550
h26 = 175.794 h27 = 162.464 h28 = 147.560 h29 = 131.082 h30 = 113.032
h31 = 93.414 h32 = 72.239 h33 = 49.536 h34 = 25.390 h35 = 0.000

(iii) Ha= 40.0,he = 0.002,Je = 0.001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 1.895

Settling the aforementioned values of Pr and Je in equation (3.7.73), it will be the same as

equation (4.2.31) since criterion is the same. Using equation (4.2.31), global stiffness matrix

I becomes the same as equation (4.2.32). On considering 35 nodes, substituting parameters
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Ha,Ec, f i (table 4.1.1) and equation (4.2.32) in equation (3.7.61), leads to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



6.688

9.690

11.841

...

12.509

8.910



(4.2.49)

The set of equations formed from equation (4.2.49) are

9.018h2 � 4.509h3 = 6.688 (4.2.50)

�4.509h2+9.018h3 � 4.509h4 = 9.690 (4.2.51)

�4.509h3+9.018h4 � 4.509h5 = 11.841 (4.2.52)

... (4.2.53)

�4.509h31+9.018h32 � 4.509h33 = 14.014 (4.2.54)

�4.509h32+9.018h33 � 4.509h34 = 12.509 (4.2.55)

�4.509h33+9.018h34 = 8.910 (4.2.56)

Equations (4.2.50) to (4.2.56) are solved by Mathematica which furnishes solutions as
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Table 4.2.6: Temperatures along the major axis when Ha = 40

h1 = 0.000 h2 = 50.146 h3 = 98.909 h4 = 145.322 h5 = 189.210
h6 = 230.178 h7 = 268.058 h8 = 302.751 h9 = 334.211 h10 = 362.406
h11 = 387.323 h12 = 408.951 h13 = 427.951 h14 = 442.333 h15 = 454.082
h16 = 462.535 h17 = 467.693 h18 = 469.552 h19 = 468.113 h20 = 463.377
h21 = 455.342 h22 = 444.009 h23 = 429.378 h24 = 411.449 h25 = 390.222
h26 = 365.697 h27 = 337.874 h28 = 306.755 h29 = 272.343 h30 = 234.642
h31 = 193.668 h32 = 149.463 h33 = 102.150 h34 = 52.063 h35 = 0.000

Blending temperatures in tables 4.2.4, 4.2.5 and 4.2.6 leads to outlines shown in figure 4.2.2.

Figure 4.2.2: Fused temperature distributions for Ha = 5.0,Ha = 20.0 and Ha = 40.0

Hartmann number determines the temperature distribution for the flow. As the value of

Hartmann number is increased, temperature increases. The effect of the electromagnetic force is

more prominent at the point of peak value as shown in figure 4.2.2 i.e the peak value increases

with increase in magnetic field. The presence of magnetic field in an electrically conducting fluid

introduces Lorentz force which acts against the flow. This force slows down the fluid velocity.

The heat transfer mode in the fluid gradually changes towards conduction from convection. When

Hartmann number is doubled from 20.0 to 40.0, core temperature increases 2.08 times. Dipjyoti

et.al [15] declared also in their results that when Hartmann number is increased, fluid temperature

increases.
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4.2.3 Altering Eckert number while maintaining Prandtl number, Hart-

mann number, distance of major axis, velocity of fluid and length of

elements

(I) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 5.0,a= 0.0034,Vc = 1.895

Bringing the above stated values of Pr and Je in equation (3.7.73), it will be the same as equation

(4.2.31) since specifications are similar. Employing equation (4.2.31), global stiffness matrix I

becomes the same as equation (4.2.32). Taking into account 35 nodes, substituting parameters

Ha,Ec, f i (table 4.1.1) and equation (4.2.32) in equation (3.7.61), it converts to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.516

4.525

4.532

...

4.534

4.523



(4.2.57)
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Algebraic equations formed from equation (4.2.57) are

9.018h2 � 4.509h3 = 4.516 (4.2.58)

�4.509h2+9.018h3 � 4.509h4 = 4.525 (4.2.59)

�4.509h3+9.018h4 � 4.509h5 = 4.532 (4.2.60)

... (4.2.61)

�4.509h31+9.018h32 � 4.509h33 = 4.539 (4.2.62)

�4.509h32+9.018h33 � 4.509h34 = 4.534 (4.2.63)

�4.509h33+9.018h34 = 4.523 (4.2.64)

Mathematica is used to solve equations (4.2.58) to (4.2.64) and dispenses solutions of hj’s as

Table 4.2.7: Temperatures along the major axis with Ec = 5.0

h1 = 0.000 h2 = 16.604 h3 = 32.207 h4 = 46.807 h5 = 60.401
h6 = 72.989 h7 = 84.571 h8 = 95.146 h9 = 104.714 h10 = 113.274
h11 = 120.828 h12 = 127.375 h13 = 132.915 h14 = 137.447 h15 = 140.973
h16 = 143.491 h17 = 145.002 h18 = 145.506 h19 = 145.003 h20 = 143.493
h21 = 140.976 h22 = 137.452 h23 = 132.920 h24 = 127.382 h25 = 120.836
h26 = 113.284 h27 = 104.724 h28 = 95.157 h29 = 84.583 h30 = 73.002
h31 = 60.414 h32 = 46.819 h33 = 32.216 h34 = 16.610 h35 = 0.000

(II) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 20.0,a= 0.0034,Vc = 1.895

Inserting the above mentioned values of Pr and Je in equation (3.7.73), it will be the same as

equation (4.2.31) since constants are equal. Utilizing equation (4.2.31), global stiffness matrix

I becomes the same as equation (4.2.32). Considering 35 nodes, substituting values Ha,Ec, f i
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(table 4.1.1) and equation (4.2.32) in equation (3.7.61), it converts to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.536

4.574

4.601

...

4.609

4.564



(4.2.65)

Equations formed from equation (4.2.65) are

9.018h2 � 4.509h3 = 4.536 (4.2.66)

�4.509h2+9.018h3 � 4.509h4 = 4.574 (4.2.67)

�4.509h3+9.018h4 � 4.509h5 = 4.601 (4.2.68)

... (4.2.69)

�4.509h31+9.018h32 � 4.509h33 = 4.628 (4.2.70)

�4.509h32+9.018h33 � 4.509h34 = 4.609 (4.2.71)

�4.509h33+9.018h34 = 4.564 (4.2.72)

On solving equations (4.2.66) to (4.2.72) by engaging Mathematica, solutions are presented as

115



Table 4.2.8: Temperatures along the major axis with Ec = 20.0

h1 = 0.000 h2 = 16.921 h3 = 32.836 h4 = 47.736 h5 = 61.616
h6 = 74.472 h7 = 86.302 h8 = 97.105 h9 = 106.879 h10 = 115.626
h11 = 123.344 h12 = 130.033 h13 = 135.694 h14 = 140.326 h15 = 143.929
h16 = 146.504 h17 = 148.050 h18 = 148.568 h19 = 148.056 h20 = 146.516
h21 = 143.947 h22 = 140.349 h23 = 135.722 h24 = 130.067 h25 = 123.382
h26 = 115.669 h27 = 106.927 h28 = 97.156 h29 = 86.357 h30 = 74.529
h31 = 61.673 h32 = 47.788 h33 = 32.878 h34 = 16.945 h35 = 0.000

(III) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 40.0,a= 0.0034,Vc = 1.895

Putting the above stated values of Pr and Je in equation (3.7.73), it will be the same as equation

(4.2.31) since parameters are the same. Manipulating equation (4.2.31), global stiffness matrix I

becomes the same as equation (4.2.32). Considering 35 nodes, substituting quantities Ha,Ec, f i

(table 4.1.1) and equation (4.2.32) in equation (3.7.61), it delivers



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.563

4.639

4.692

...

4.709

4.619



(4.2.73)
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Equations formed from equation (4.2.73) are

9.018h2 � 4.509h3 = 4.563 (4.2.74)

�4.509h2+9.018h3 � 4.509h4 = 4.639 (4.2.75)

�4.509h3+9.018h4 � 4.509h5 = 4.692 (4.2.76)

... (4.2.77)

�4.509h31+9.018h32 � 4.509h33 = 4.747 (4.2.78)

�4.509h32+9.018h33 � 4.509h34 = 4.709 (4.2.79)

�4.509h33+9.018h34 = 4.619 (4.2.80)

Mathematica is used to solve the system of equations (4.2.74) to (4.2.80) and furnishes solutions

of hj’s as

Table 4.2.9: Temperatures along the major axis with Ec = 40.0

h1 = 0.000 h2 = 17.341 h3 = 33.670 h4 = 48.971 h5 = 63.231
h6 = 76.442 h7 = 88.602 h8 = 99.707 h9 = 109.756 h10 = 118.748
h11 = 126.684 h12 = 133.562 h13 = 139.383 h14 = 144.147 h15 = 147.853
h16 = 150.502 h17 = 152.093 h18 = 152.627 h19 = 152.104 h20 = 150.523
h21 = 147.884 h22 = 144.188 h23 = 139.435 h24 = 133.624 h25 = 126.756
h26 = 118.831 h27 = 109.848 h28 = 99.807 h29 = 88.709 h30 = 76.554
h31 = 63.342 h32 = 49.074 h33 = 33.754 h34 = 17.389 h35 = 0.000

Incorporating temperatures in tables 4.2.7, 4.2.8 and 4.2.9 presents profiles in figure 4.2.3.
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Figure 4.2.3: Mixed temperature profiles for Ec = 5.0,Ec = 20.0 and Ec = 40.0

Increase in Eckert number, a dimensionless quantity, the ratio of the kinetic energy to the

enthalpy, increases temperature distribution as shown in figure 4.2.3. At high velocities of fluid

flow, there are effects of heat dissipation due to internal friction of the fluid. This leads to self

heating which changes temperature distribution. On doubling Eckert number from 20 to 40, peak

temperature increases by 2.7%. Utilizing different formation, results obtained by Liaquat [18]

exposed also that rise in Eckert number led to rise in temperature.

Comparing temperature distribution when Hartmann number and Eckert number are the same

eg Ha = Ec = 20.0, core temperature for Ha is 225.757 while that for Ec is 148.568 i.e Hartmann

number’s value is 1.52 times greater than that of Eckert number’s value. This is because heat

transmission by conduction is greater than that of effects of heat dissipation due to internal friction

of the fluid. Ha is squared in the formulation while Ec is to power 1 in the formulation, equation

(3.7.61).
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4.2.4 Varying velocity of fluid while preserving Hartmann number, Eck-

ert number, Prandtl number, distance of major axis and length of

elements

In the investigation of velocity profile, subsection 4.1, velocity of fluid vary with change in

Reynolds number, Re. This data is utilized in this subsector by embracing values in tables 4.1.7,

4.1.8 and 4.1.9

(A) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 3.789

Fluid velocity obtained when Re = 2.0 is as shown in table 4.1.7. Core velocity, for this table

being Vc = 3.789. Laying the above stated values of Pr and Je in equation (3.7.73), it will be the

same as equation (4.2.31) since constants are equal. Adopting equation (4.2.31), global stiffness

matrix I becomes the same as equation (4.2.32). Considering 35 nodes, substituting parameters

Ha,Ec, f i (table 4.1.7) and equation (4.2.32) in equation (3.7.61), it turns out to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.514

4.522

4.527

...

4.529

4.520



(4.2.81)
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Algebraic equations formed from equation (4.2.81) are

9.018h2 � 4.509h3 = 4.514 (4.2.82)

�4.509h2+9.018h3 � 4.509h4 = 4.522 (4.2.83)

�4.509h3+9.018h4 � 4.509h5 = 4.527 (4.2.84)

... (4.2.85)

�4.509h31+9.018h32 � 4.509h33 = 4.533 (4.2.86)

�4.509h32+9.018h33 � 4.509h34 = 4.529 (4.2.87)

�4.509h33+9.018h34 = 4.520 (4.2.88)

Mathematica is used to solve equations (4.2.82) to (4.2.88) and dispenses solutions of hj’s as

Table 4.2.10: Temperatures along the major axis for Vc = 3.789

h1 = 0.000 h2 = 16.585 h3 = 32.168 h4 = 46.749 h5 = 60.326
h6 = 72.898 h7 = 84.464 h8 = 95.025 h9 = 104.580 h10 = 113.130
h11 = 120.673 h12 = 127.211 h13 = 132.743 h14 = 137.270 h15 = 140.790
h16 = 143.305 h17 = 144.814 h18 = 145.318 h19 = 144.815 h20 = 143.307
h21 = 140.793 h22 = 137.273 h23 = 132.748 h24 = 127.216 h25 = 120.679
h26 = 113.137 h27 = 104.588 h28 = 95.034 h29 = 84.474 h30 = 72.908
h31 = 60.336 h32 = 46.759 h33 = 32.176 h34 = 16.589 h35 = 0.000

(B) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 7.578

When Re = 4.0, fluid velocity is as shown in table 4.1.8. Putting the aforementioned values of Pr

and Je in equation (3.7.73), it will be the same as equation (4.2.31) since criterion is the same.

Manipulating equation (4.2.31), global stiffness matrix I becomes the same as equation (4.2.32).

Upon considering 35 nodes, substituting values Ha,Ec, f i (table 4.1.8) and equation (4.2.32) in
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equation (3.7.61), it metamorphoses to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.531

4.561

4.582

...

4.589

4.553



(4.2.89)

Algebraic equations formed from equation (4.2.89) are

9.018h2 � 4.509h3 = 4.531 (4.2.90)

�4.509h2+9.018h3 � 4.509h4 = 4.561 (4.2.91)

�4.509h3+9.018h4 � 4.509h5 = 4.582 (4.2.92)

... (4.2.93)

�4.509h31+9.018h32 � 4.509h33 = 4.604 (4.2.94)

�4.509h32+9.018h33 � 4.509h34 = 4.589 (4.2.95)

�4.509h33+9.018h34 = 4.553 (4.2.96)

Mathematica is used to solve equations (4.2.90) to (4.2.96) and procures solutions of hj’s as
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Table 4.2.11: Temperatures along the major axis for Vc = 7.578

h1 = 0.000 h2 = 16.837 h3 = 32.669 h4 = 47.490 h5 = 61.294
h6 = 74.079 h7 = 85.843 h8 = 96.586 h9 = 106.306 h10 = 115.003
h11 = 122.678 h12 = 129.329 h13 = 134.958 h14 = 139.564 h15 = 143.147
h16 = 145.707 h17 = 147.244 h18 = 147.758 h19 = 147.249 h20 = 145.716
h21 = 143.161 h22 = 139.582 h23 = 134.981 h24 = 129.356 h25 = 122.709
h26 = 115.038 h27 = 106.344 h28 = 96.627 h29 = 85.888 h30 = 74.125
h31 = 61.340 h32 = 47.532 h33 = 32.703 h34 = 16.856 h35 = 0.000

(C) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0034,Vc = 15.157

Table 4.1.9 shows velocity of fluid when Re = 8.0. Setting the above stated values of Pr and Je

in equation (3.7.73), it will be the same as equation (4.2.31) since constants are equal. Utilizing

equation (4.2.31), global stiffness matrix I becomes the same as equation (4.2.32). Taking into

account 35 nodes, substituting values Ha,Ec, f i (table 4.1.9) and equation (4.2.32) in equation

(3.7.61), it hands out



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h33

h34



=



4.596

4.716

4.802

...

4.829

4.685



(4.2.97)
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Set of equations formed from equation (4.2.97) are

9.018h2 � 4.509h3 = 4.596 (4.2.98)

�4.509h2+9.018h3 � 4.509h4 = 4.716 (4.2.99)

�4.509h3+9.018h4 � 4.509h5 = 4.802 (4.2.100)

... (4.2.101)

�4.509h31+9.018h32 � 4.509h33 = 4.889 (4.2.102)

�4.509h32+9.018h33 � 4.509h34 = 4.829 (4.2.103)

�4.509h33+9.018h34 = 4.685 (4.2.104)

Mathematica is used to solve equations (4.2.98) to (4.2.104) and delivers solutions of hj’s as

Table 4.2.12: Temperatures along the major axis for Vc = 15.157

h1 = 0.000 h2 = 17.845 h3 = 34.672 h4 = 50.452 h5 = 65.167
h6 = 78.807 h7 = 91.361 h8 = 102.828 h9 = 113.206 h10 = 122.494
h11 = 130.690 h12 = 137.795 h13 = 143.808 h14 = 148.729 h15 = 152.558
h16 = 155.296 h17 = 156.942 h18 = 157.496 h19 = 156.958 h20 = 155.329
h21 = 152.607 h22 = 148.794 h23 = 143.889 h24 = 137.892 h25 = 130.803
h26 = 122.623 h27 = 113.350 h28 = 102.986 h29 = 91.530 h30 = 78.983
h31 = 65.344 h32 = 50.617 h33 = 34.805 h34 = 17.922 h35 = 0.000

Linking temperatures in tables 4.2.10, 4.2.11 and 4.2.12 presents contours in figure 4.2.4.
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Figure 4.2.4: Coupled temperature outlines for Vc = 3.789,Vc = 7.578 and Vc = 15.157

When core velocity of fluid is doubled from 7.578 to 15.157, figure 4.2.4, core temperature

increases by 6.6%. Increase in velocity lead to increase in temperature.

4.2.5 Modifying distance of major axis while preserving Hartmann num-

ber, Eckert number, Prandtl number, velocity of fluid and length of

elements

Distance of major axis is varied by increasing the number of nodes. When the number of nodes is

increased, velocity at the nodes will also vary as found in the research on velocity profile. This

means that values of velocity in tables 4.1.11, 4.1.12 and 4.1.13 will be adopted in this subsection.

(i) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.002,Vc = 47.263

The values of velocity for a = 0.002 are shown in table 4.1.11. Settling the above stated values of

Pr and Je in equation (3.7.73), it will be the same as equation (4.2.31) since specifications are

the same. Embracing equation (4.2.31), global stiffness matrix I becomes the same as equation
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(4.2.32). Considering 21 nodes, substituting values Ha,Ec, f i (table 4.1.11) and equation (4.2.32)

in equation (3.7.61), it accords



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h19

h20



=



5.360

6.532

7.374

...

7.635

6.229



(4.2.105)

Equations formed from equation (4.2.105) are

9.018h2 � 4.509h3 = 5.360 (4.2.106)

�4.509h2+9.018h3 � 4.509h4 = 6.532 (4.2.107)

�4.509h3+9.018h4 � 4.509h5 = 7.374 (4.2.108)

... (4.2.109)

�4.509h17+9.018h18 � 4.509h19 = 7.901 (4.2.110)

�4.509h18+9.018h19 � 4.509h20 = 7.635 (4.2.111)

�4.509h19+9.018h20 = 6.229 (4.2.112)

Mathematica is used to solve equations (4.2.106) to (4.2.112) and procures solutions of hj’s as
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Table 4.2.13: Temperatures along the major axis when a = 0.002

h1 = 0.000 h2 = 16.407 h3 = 31.624 h4 = 45.393 h5 = 57.527
h6 = 67.911 h7 = 76.479 h8 = 83.194 h9 = 88.036 h10 = 90.994
h11 = 92.062 h12 = 91.236 h13 = 88.515 h14 = 83.898 h15 = 77.386
h16 = 68.980 h17 = 58.686 h18 = 46.521 h19 = 32.603 h20 = 16.992
h21 = 0.000 � � � �

(ii) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0028,Vc = 47.358

Table 4.1.12 provides the values of velocity for a = 0.0028. Putting the aforementioned values of

Pr and Je in equation (3.7.73), it will be the same as equation (4.2.31) since constants are the same.

Manipulating equation (4.2.31), global stiffness matrix I becomes the same as equation (4.2.32).

Upon considering 29 nodes, substituting parameters Ha,Ec, f i (table 4.1.12) and equation (4.2.32)

in equation (3.7.61), it hands out



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h27

h28



=



5.360

6.532

7.374

...

7.631

6.228



(4.2.113)
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Set of equations formed from equation (4.2.113) are

9.018h2 � 4.509h3 = 5.360 (4.2.114)

�4.509h2+9.018h3 � 4.509h4 = 6.532 (4.2.115)

�4.509h3+9.018h4 � 4.509h5 = 7.374 (4.2.116)

... (4.2.117)

�4.509h25+9.018h26 � 4.509h27 = 8.212 (4.2.118)

�4.509h26+9.018h27 � 4.509h28 = 7.631 (4.2.119)

�4.509h27+9.018h28 = 6.228 (4.2.120)

Equations (4.2.114) to (4.2.120) are solved by Mathematica which grants solutions of hj’s as

Table 4.2.14: Temperatures along the major axis when a = 0.0028

h1 = 0.000 h2 = 23.967 h3 = 46.746 h4 = 68.076 h5 = 87.771
h6 = 105.715 h7 = 121.844 h8 = 136.120 h9 = 148.523 h10 = 159.042
h11 = 167.671 h12 = 174.406 h13 = 179.245 h14 = 182.189 h15 = 183.236
h16 = 182.385 h17 = 179.638 h18 = 174.993 h19 = 168.451 h20 = 160.011
h21 = 149.674 h22 = 137.44 h23 = 123.310 h24 = 107.285 h25 = 89.373
h26 = 69.589 h27 = 47.982 h28 = 24.682 h29 = 0.000 �

(iii) Ha= 1.0,Je = 0.0001,Pr= 1.0,Ec= 1.0,a= 0.0032,Vc = 47.364

Values of velocity for a = 0.0032 are given by table 4.1.13. Inserting the above stated values

of Pr and Je in equation (3.7.73), it will be the same as equation (4.2.31) since specifications

are the same. Using equation (4.2.31), global stiffness matrix I becomes the same as equation

(4.2.32). Taking into account 33 nodes, substituting parameters Ha,Ec, f i (table 4.1.13) and
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equation (4.2.32) in equation (3.7.61), it converts to



9.018 �4.509 0 0 . . .

�4.509 9.018 �4.509 0 . . .

0 �4.509 9.018 �4.509
. . .

0 0 �4.509 9.018
. . .

...
... . . . . . . . . .





h2

h3

h4

...

h31

h32



=



5.360

6.532

7.374

...

7.635

6.229



(4.2.121)

Collection of equations formed from equation (4.2.121) are

9.018h2 � 4.509h3 = 5.360 (4.2.122)

�4.509h2+9.018h3 � 4.509h4 = 6.532 (4.2.123)

�4.509h3+9.018h4 � 4.509h5 = 7.374 (4.2.124)

... (4.2.125)

�4.509h29+9.018h30 � 4.509h31 = 8.221 (4.2.126)

�4.509h30+9.018h31 � 4.509h32 = 7.635 (4.2.127)

�4.509h31+9.018h32 = 6.229 (4.2.128)

Algebraic equations (4.2.122) to (4.2.128) are solved by Mathematica which yields solutions of

hj’s as
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Table 4.2.15: Temperatures along the major axis when a = 0.0032

h1 = 0.000 h2 = 27.750 h3 = 54.310 h4 = 79.423 h5 = 102.899
h6 = 124.626 h7 = 144.537 h8 = 162.596 h9 = 178.781 h10 = 193.082
h11 = 205.492 h12 = 216.009 h13 = 224.631 h14 = 231.357 h15 = 236.186
h16 = 239.118 h17 = 240.152 h18 = 239.290 h19 = 236.530 h20 = 231.873
h21 = 225.318 h22 = 216.867 h23 = 206.517 h24 = 194.271 h25 = 180.127
h26 = 164.087 h27 = 146.150 h28 = 126.313 h29 = 104.599 h30 = 81.009
h31 = 55.595 h32 = 28.488 h33 = 0.000 � �

Incorporating temperatures in tables 4.2.13, 4.2.14 and 4.2.15 gives form in figure 4.2.5.

Figure 4.2.5: Merged temperature contours for a = 0.002,a = 0.0028 and a = 0.0032

Increasing half major axis from 0.0028 to 0.0032 i.e increasing aspect ratio, increases the core

temperature 1.31 times as shown in figure 4.2.5. More fluid conducting particles are involved

resulting in increase in Lorentz force that increases temperature. Employing a different set up,

Naikoti and Balla [30] also averred that increase in aspect ratio increases temperature and velocity.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research, velocity profile and temperature distribution for MHD flow in a straight horizontal

pipe of elliptical cross section has been described. The governing equations (pdes) have been

formulated in terms of cylindrical coordinates, non-dimensionalised, expressed in terms of stream

function, converted into odes and solved numerically using FEM. The solutions have been

represented in terms of 28 tables and 11 graphs and disclose that: Increase in Hartmann number

increases temperature but retards velocity. Rise in Reynolds number and aspect ratio leads to

rise in both velocity and temperature. An upsurge in gravitational force results in an upsurge

of velocity. Temperature increases when Eckert number increases but decreases when Prandtl

number is raised. All the four objectives have been achieved. From these findings, increase in

aspect ratio leads to increase in temperature and velocity which are among the main components

of MHD. A pipe of elliptical cross section would be more productive in MHD processes than a

circular one because it provides greater capacity than a circular one of the same depth. Secondly,

elliptical pipe provides greater torque to the fluid which results in increase in fluid velocity which

in turn increases fluid temperature, Moffatt [8].

5.2 Recommendations

A number of assumptions were considered in this research. A steady state investigation can also

be carried out when the quantities are factored in. Also, there is still room to research on the

unsteady state. The governing equations can again be solved by FEM.
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APPENDICES

Appendix A

Mathematica syntax for solving algebraic equations

Mathematica is manipulated to solve algebraic equations and the following syntax was used to

solve equations (4.2.122) to (4.2.128):

Solve[9.018h2 � 4.509h3 == 5.360&&� 4.509h2+9.018h3 � 4.509h4 == 6.532&&� 4.509h3+

9.018h4�4.509h5==7.374&&�4.509h4+9.018h5�4.509h6==7.890&&�4.509h5+9.018h6

�4.509h7==8.188&&�4.509h6+9.018h7�4.509h8==8.354&&�4.509h7+9.018h8�4.509h9

== 8.446&&�4.509h8+9.018h9 � 4.509h10 == 8.496&&�4.509h9+9.018h10 � 4.509h11 ==

8.523&&� 4.509h10+9.018h11 � 4.509h12 == 8.538&&� 4.509h11+9.018h12 � 4.509h13 ==

8.546&&� 4.509h12+9.018h13 � 4.509h14 == 8.550&&� 4.509h13+9.018h14 � 4.509h15 ==

8.552&&� 4.509h14+9.018h15 � 4.509h16 == 8.554&&� 4.509h15+9.018h16 � 4.509h17 ==

8.554&&� 4.509h16+9.018h17 � 4.509h18 == 8.555&&� 4.509h17+9.018h18 � 4.509h19 ==

8.555&&� 4.509h18+9.018h19 � 4.509h20 == 8.555&&� 4.509h19+9.018h20 � 4.509h21 ==

8.555&&� 4.509h20+9.018h21 � 4.509h22 == 8.555&&� 4.509h21+9.018h22 � 4.509h23 ==

8.555&&� 4.509h22+9.018h23 � 4.509h24 == 8.555&&� 4.509h23+9.018h24 � 4.509h25 ==

8.555&&� 4.509h24+9.018h25 � 4.509h26 == 8.553&&� 4.509h25+9.018h26 � 4.509h27 ==

8.550&&� 4.509h26+9.018h27 � 4.509h28 == 8.541&&� 4.509h27+9.018h28 � 4.509h29 ==

8.514&&� 4.509h28+9.018h29 � 4.509h30 == 8.437&&� 4.509h29+9.018h30 � 4.509h31

== 8.221&&� 4.509h30+9.018h31 � 4.509h32 == 7.635&&� 4.509h31+9.018h32 == 6.229,

{h2,h3,h4,h5,h6,h7,h8,h9,h10,h11,h12,h13,h14,h15,h16,h17,h18,h19,h20,h21,h22,h23,h24,

h25,h26,h27,h28,h29,h30,h31,h32}]
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Appendix B

Mathematica syntax for constructing, colouring and labeling graphs

Figure 4.37 is procured by Mathematica 12.0 syntax written as: ListLinePlot[{{{-0.002, 0},

{-0.0018, 16.406520292748}, {-0.0016, 31.624306941672}, {-0.0014, 45.393435351519}, {

-0.0012, 57.527167886449}, {-0.001, 67.911066755378}, {-0.0008, 76.479041916167}, {-

0.0006, 83.194278110445}, {-0.0004, 88.036371701042}, {-0.0002, 90.994233754713}, {0,

92.061876247505}, {0.0002, 91.235972499445}, {0.0004, 88.514970059880}, {0.0006, 83.8982

03592814}, {0.0008, 77.385894876912}, {0.001, 68.979818141495}, {0.0012, 58.685739631847

}, {0.0014, 46.520514526503}, {0.0016, 32.603016189842}, {0.0018, 16.992237746729},

{0.002, 0}}, {{-0.0028, 0}, {-0.0026, 23.9673985362616}, {-0.0024, 46.746063428698}, {-

0.0022, 68.076070082058}, {-0.002, 87.770680860501}, {-0.0018, 105.715457972943}, {-

0.0016, 121.844311377245}, {-0.0014, 136.120425815037}, {-0.0012, 148.523397649146},

{-0.001, 159.042137946329}, {-0.0008, 167.670658682634}, {-0.0006, 174.405633178088},

{-0.0004, 179.245287203370}, {-0.0002, 182.188733643823}, {0, 183.235528942115}, {0.0002,

182.385229540918}, {0.0004, 179.637835440230}, {0.0006, 174.993124861388}, {0.0008,

168.451097804391}, {0.001, 160.011088933244}, {0.0012, 149.673985362608}, {0.0014, 137.4

40008871147}, {0.0016, 123.309824794855}, {0.0018, 107.285429141717}, {0.002, 89.372809

935684}, {0.0022, 69.589044133954}, {0.0024, 47.982035928144}, {0.0026, 24.681747615879},

{0.0028, 0}}, {{-0.0032, 0}, {-0.003, 27.749563373253}, {-0.0028, 54.310393102684}, {-

0.0026, 79.422564593036}, {-0.0024, 102.899340208472}, {-0.0022, 124.626282157906},

{-0.002, 144.537300399202}, {-0.0018, 162.595579673985}, {-0.0016, 178.780716345087},

{-0.0014, 193.081621479263}, {-0.0012, 205.492307052561}, {-0.001, 216.009446385008},
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{-0.0008, 224.631265247283}, {-0.0006, 231.356876524728}, {-0.0004, 236.185836660013},

{-0.0002, 239.117702095808}, {0, 240.152472832113}, {0.0002, 239.289927090264}, {0.0004,

236.530064870259}, {0.0006, 231.872886172100}, {0.0008, 225.318390995786}, {0.001,

216.866579341317}, {0.0012, 206.517451208695}, {0.0014, 194.271006597915}, {0.0016,

180.12724550898}, {0.0018, 164.086611499228}, {0.002, 146.149769904635}, {0.0022, 126.318

716733200}, {0.0024, 104.599440008871}, {0.0026, 81.009016688845}, {0.0028, 55.5953509

64737}, {0.003, 28.488405134176}, {0.0032, 0}}}, PlotLegends -> {"a=0.002", "a=0.0028",

"a=0.0032"}, PlotStyle -> {{RGBColor[0.51, 0., 0.93], AbsoluteThickness[6], Solid}, {RGB-

Color[0.99, 0., 0.49], AbsoluteThickness[6], Solid}, {RGBColor[0.89, 0.66, 0.], AbsoluteThick-

ness[6], Solid}}, AxesStyle -> Black, AxesLabel -> {HoldForm[Length of major axis], Hold-

Form[Temperature of fluid]}, PlotLabel -> None, LabelStyle -> 20, GrayLevel[0], ImageSize ->

Full].
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