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d’Acoustique-Graduate School (IA-GS), CNRS, Le Mans Université France.

Abstract. This paper discusses the impact of the fractal structure of porous materials on wave
behavior. In addition to commonly used parameters such as porosity, tortuosity, viscous and
thermal characteristic lengths, a fractal dimension (α) can be introduced to represent the self-
similarity of the material. The Helmholtz equation for wave propagation in a porous medium
can then be modified to depend on non-integer dimensions. The fractal structure affects the
wave’s speed, attenuation, and phase shifts, with supersonic wave speeds possible for for cer-
tain values of the fractal dimension. The equivalent thickness of the material also varies with the
fractal dimension becoming larger for low values of the fractal dimension. This provides us with
valuable insights into the potential for creating novel metamaterials with exceptional acoustic
properties by adjusting the fractal dimension value, enabling the attainment of supersonic veloc-
ities and substantial equivalent thicknesses. Understanding the effect of the fractal dimension
on wave behavior has important implications for developing effective acoustic materials and
can inform research in noise reduction, metamaterials, medicine, seismology, geophysics, and
petroleum engineering.

Key words: Porous Materials, Fractals, Ultrasound, Attenuation, Fractal Dimension, super-
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1 INTRODUCTION

Fractals are complex geometric structures that exhibit self-similarity at different scales or
magnifications, and have been widely applied in various scientific and technological fields, in-
cluding physics, biology, finance, mathematics, computer science, acoustics, and non-destructive
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testing [1, 2, 3, 4]. In the field of materials mechanics, fractals have been used to model the
structure and properties of fractal materials such as polymers, metals, composites, and porous
materials, and to predict their mechanical properties, including fracture toughness and hardness.
In acoustics, fractals have been used to model the propagation of sound in complex and hetero-
geneous media such as porous materials [5, 6] and granular media, and to analyze complex
acoustic signals such as cardiac and vocal signals. In non-destructive testing, fractals have been
used to detect defects in materials such as cracks, inclusions, and porosities, and to measure
surface properties of materials, such as roughness [7] and texture, using fractal-based image
processing techniques.

In recent years, there has been growing interest in the study of sound propagation in porous
media with fractal structure. Porous media with self-similar structure, referred to as fractal
porous media, are characterized by complex geometries and exhibit unique acoustic properties
that are different from those of traditional porous media. Several studies [5, 6, 8, 9] have inves-
tigated the acoustic behavior of fractal porous media, including the effects of fractal geometry
on acoustic absorption, transmission, and scattering.

According to the power-law relationship proposed by Mandelbrot [1], the massM of a spher-
ical portion of a fractal material is related to its radius R through the expression: M ∝ RD,,
where D represents the mass fractal dimension. This mathematical relationship implies that the
rate at which the mass of a fractal object increases is determined by its fractal dimension D. As
the size of the object increases, its mass grows at a specific rate in proportion to the power of its
fractal dimension, as stated by Crownover [10]. If a porous material demonstrates a high degree
of self-similarity, it can be considered as a fractal [11, 12, 13]. This self-similarity is observed
in the repetition of the material’s structure at different scales, particularly in the pore structure,
where smaller pores share similar shapes and arrangements with larger ones [14].

The study of differential operators in non-integer dimensional spaces is a crucial area of
research in fractal geometry [15, 16]. Traditional differential calculus deals with smooth, con-
tinuous spaces such as Euclidean space or the real line. However, many natural phenomena
exhibit non-smooth or discontinuous behavior, which is better modeled using fractals or other
non-integer dimensional spaces [17].

1.1 NON-INTERGER DIMENSIONAL SPACE MODEL

An approach proposed by Wilson [18], Stillinger [19], and Collins [20] involves integration
and differentiation on non-integer spaces. This approach employs integration on such spaces for
dimensional regularization in physics domains such as quantum theory [20, 21, 22] and physical
kinetics [23, 24]. The Laplace scalar operators for non-integer dimensional spaces introduced
by Stillinger [19], Palmer, and Stavrinou [15] have proven to be effective in various areas of
physics, including quantum mechanics [19, 15, 25], electrodynamics [26, 27], scattering pro-
cesses [28], and general relativity [29]. However, the product measure approach [19, 15] fails
to consider the generalizations of gradient, divergence, curl, and Laplace vector operators for
fractional and non-integer spaces, which are necessary to describe anisotropic fractal media.
Tarasov’s work provides these generalizations [17, 16]. Balankin et al. [30, 31] have developed
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a differential vector calculus based on the concept of metric derivative and propose two possible
definitions of vector differential operators in fractional space.

Our research focuses on Tarasov’s method [17, 16] to analyze wave propagation in fractal
porous media. While a previous study investigated this phenomenon in the time domain [8], our
approach solves the problem in the frequency domain to gain deeper insights into the interplay
between the medium’s structural properties and wave propagation.

Tarasov’s method adapts the product measure technique, which was originally proposed by
Stillinger [19] and Svozil [32]. The key to Tarasov’s method is defining the nabla operator [17]
as follows:

∇α =
3∑
i=1

ei
W (αi, xi)

· ∇xi (1)

The term αi denotes the non-integer fractal dimension of a line in a given direction, ranging
from 0 (for a perfectly fractal material) to 1 (for a non-fractal medium). The density of states,
denoted by the function W (αi, xi), is defined by the measure for integration in non-integer
dimensional space and can be expressed as follows:

W (αi, xi) =
παi/2

Γ(αi/2)
|xi|αi−1 , (2)

our main objective is to apply Tarasov’s method to reframe the fundamental equations of acous-
tics in a rigid, porous medium. Our ultimate aim is to solve the propagation equation and obtain
the reflection and transmission operators in the frequency domain.

2 ACOUSTIC OF POROUS MEDIA

The motion of a fluid, including the propagation of waves, can be described by the Euler
Equations, a subset of the Navier-Stokes equations that accounts for the absence of viscosity
[33, 34, 35]. When a wave interacts with a fluid, it causes minor fluctuations in the fluid’s
velocity, pressure, and density. The Euler equations can be expressed as:

∂

∂t
(ρ0v) +∇p = 0, ∂p

∂t
+Ka∇ · v = 0. (3)

where v is the fluid velocity, p the pressure, ρ0 the density, and Ka is the bulk modulus of the
fluid. Using Equations (3), we can easily obtain the following wave equation:

�p(r, t) = 0, (4)

where � is the d’Alembert operator defined as � = 1
c20

∂2

∂t2
−∇2, c0 =

√
Ka/ρ0 is the velocity

of sound in air. The presence of solid particles or other porous structures in a medium can
influence the fluid motion when a wave propagates through it. To describe fluid motion in
such a medium, we can extend the Euler equations to account for the porous structures. These
equations are known as the Biot equations [36]. In the case of a wave propagating through
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a homogeneous and isotropic porous material saturated with air, such as porous foams, we
can simplify the Biot model significantly. In this simplified scenario, the behavior of waves in a
porous medium can be approximated using the equivalent fluid model [37]. This model assumes
that the solid structures in the porous medium are rigid and do not vibrate when interacting with
the wave

iωρ(ω)V(ω) = −∇P (ω), iωP (ω) = −K(ω)∇V(ω), (5)

here, P (ω), and V(ω), respectively, represent the Fourier transform of p(t), and v(t). In this
case we have the equivalent density ρ(ω) = ρ0ε(ω), instead of just the density ρ0, taking into
account the viscous interactions between the fluid and the solid structure that are described by
the dynamic tortuosity ε(ω). Moreover, we have 1

K(ω)
= β(ω)

Ka
instead of K, taking into account

the thermal exchanges that are described by the thermal compressibility β(ω). The dynamic
tortuosity [38] and the thermal compressibility [39] can be written as:

ε(ω) = ε∞ +
2ε∞√

Λ

(
η

iωρ

) 1
2

, β(ω) = 1 +
2(γ − 1)√

Λ′

(
η

iωρPr

) 1
2

, (6)

where ε∞ is the tortuosity, Λ the viscous characteristic length, η the dynamic viscosity, γ the
adiabatic constant, Λ′ the thermal characteristic length, and Pr Prandtl number. Using Equations
(5), we can easily obtain the Helmholtz equation in the frequency domain:

∇2P (r, ω) + k(ω)2P (r, ω) = 0, (7)

where k(ω) = w/c(ω) is the characteristic wave number, and c(ω) =
√

Ka
ρε(ω)β(ω)

, is the phase
velocity.

3 FRACTAL POROUS MATERIAL

A fractal porous material is a type of porous material that displays a complex, self-similar ge-
ometric structure, as described by Mandelbrot [1] and Adler [12] using fractals, which are math-
ematical objects exhibiting repeating patterns at different scales. Fractal geometry in porous
materials is a result of the way the material is constructed, such as particle packing or crystal
growth, and has significant effects on its physical and mechanical properties, including perme-
ability, porosity, and mechanical strength [12].

The pore space in a fractal porous medium has a complex and self-similar structure char-
acterized by a non-integer fractal dimension, making it unsuitable to describe using standard
Euclidean geometry based on integer dimensions. By using the previously defined fractal gra-
dient operator (1), the Euler equations (5), and the Helmholtz equation (7) can be expressed as
follows:

iωρ(ω)V(r, ω) = −∇αP (r, ω),
1

K(ω)
iωP (r, ω) = −∇αV(r, ω) , (8)

4αP (r, ω) + k(ω)2P (r, ω) = 0, (9)
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when examining the propagation of a wave in a fractal porous material along the x-axis, the
aforementioned equations can be expressed as:

V (x, ω) = − 1

iωρ(ω)W (x, α)

∂

∂x

(
1

W (x, α)

∂P (x, ω)

∂x

)
(10)

P (x, ω) = − iωK(ω)

W (x, α)

∂

∂x

(
1

W (x, α)

∂V (x, ω)

∂x

)
(11)

1

W (x, α)

∂

∂x

(
1

W (x, α)

∂P (x, ω)

∂x

)
+ k(ω)2P (x, ω) = 0, (12)

where k(ω) = ω
√

ρ(ω)
K(ω)

. The equation identified as (12) can be restated as:

∇2

(
P (x, ω)

xα−1

)
+ kα(ω)2P (x, ω) = 0 (13)

where kα(ω) = k(ω) παi/2

Γ(αi/2)
is an equivalent wave number that is proportional to the original

wave number, but is also modified by the fractal dimension of the medium. In a porous medium,
the wave number can be a complex quantity due to the presence of attenuation and dispersion
effects [37, 40]. The real part of the wave number represents the spatial variation of the wave,
while the imaginary part represents the attenuation of the wave due to the dissipative properties
of the medium. The wave number k(ω) in a porous medium can be expressed as follows [37]:

k(ω) =
ω

cp(ω)
+ ia(ω), (14)

where cp(ω) is the phase velocity, and a(ω) is the attenuation, In the case of a fractal porous
medium, we obtain:

kα(ω) =
ω

cαp (ω)
+ iaα(ω), (15)

where

cαp (ω) = cp(ω)
παi/2

Γ(αi/2)
, aα(ω) = a(ω)

παi/2

Γ(αi/2)
, (16)

are , respectively, the equivalent phase velocity, and the equivalent attenuation.
Consider a porous material plate of thickness L, traversed by an incident acoustic wave and

producing a reflected wave and a transmitted wave, taking into account the continuity condi-
tions of pressure p and flow φv, we obtain the following expressions for the reflection and
transmission coefficients

R =
x− y tanh(γα/2)

x+ y tanh(γα/2)
, (17)

T =
2x

x+ y tanh(γα/2)
. (18)
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where x = 1
2
(1 + Z2), y = Z

√
x2 − 1, Z = φ

Zf
Zm

, Zf =
√
ρ0Ka, Zm =

√
ρ(ω)K(ω),

γα = kαLα. Lα = Lα/α is a measure of the effective path length or size of the medium that
considers its intricate, self-similar structure.

4 Discussion

Porous materials are commonly characterized by parameters such as porosity (φ), tortuosity
(ε∞), and the viscous and thermal characteristic lengths (Λ and Λ′) [37]. However, by con-
sidering the fractal nature of the material, an additional parameter, α, can be introduced to
represent the fractal dimension of the material. This dimension takes non-integer values and
provides insight into the level of self-similarity exhibited by the porous medium in a specific
direction, such as the direction of wave propagation. As the fractal dimension of the porous
material approaches zero, the material demonstrates a high degree of self-similarity at different
scales. When α = 1, the material is considered to be non-fractal. Incorporating the self-similar
structure of the material can result in a more comprehensive understanding of its properties and
increased accuracy of the parameters φ, α∞, Λ, and Λ′.

Figure 1: Plot of the equivalent phase velocity defined by Eq.16 with respect to the frequency for different values
of the fractal dimension α

The introduction of the fractal dimension in the Helmholtz equation governing wave propa-
gation in a porous medium leads to the dependence of the resulting wave number in Equation
(15), phase velocity and attenuation in (16) on non-integer dimensions. This observation em-
phasizes the impact of the porous medium’s fractal structure on the wave’s behavior and its
propagation characteristics. In other words, the medium’s self-similarity is a key factor in shap-
ing the wave’s movement through it.

Figure (1) illustrates the variation of the phase velocity with respect to frequency for different
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Figure 2: Plot of the equivalent thickness Lα = Lα/α with respect to the fractal dimension α for different values
of the porous material thickness L = [0.005, 0.01, 0.03, 0.05, 0.1]m

values of the fractal dimension α. It shows some interesting results: for instance, for values of
α < 1, supersonic speeds of the wave are observed. Supersonic wave speeds refer to the
propagation of waves that travel faster than the speed of sound in the medium, which is not
typically observed in most materials and is generally associated with high-energy phenomena
such as shock waves or explosions [41]. However, the fractal structure of a porous material can
introduce irregularities in the medium that allow for the possibility of supersonic wave speeds
under certain conditions. When a wave propagates through such a medium, it encounters a
complex network of pores and voids that can lead to interference and scattering, causing the
wave to travel faster than it would in a regular medium.

Incorporating the fractal approach reveals an intriguing outcome: the equivalent thickness
of the material. This parameter provides valuable insights into wave behavior within a frac-
tal porous medium (Figure 2). As the fractal dimension α approaches 0, Lα increases, while
approaching 1 leads to Lα converging to L. When waves propagate through a highly self-
similar fractal porous material, they encounter repetitive structures that can cause reflection or
refraction. This phenomenon induces constructive or destructive interference, amplifying or
attenuating the waves. Moreover, these repeated patterns increase the path length, enhancing
scattering and attenuation. Conversely, as the fractal dimension approaches 1, the porous ma-
terial exhibits a more random internal structure, reducing the chances of encountering similar
structures across scales. Consequently, waves follow more direct paths, resulting in reduced
scattering and attenuation. The concept of equivalent thickness reveals the direct influence of
fractal self-similarity on the effective thickness of classical porous materials.

To further illustrate the influence of a material’s self-similarity on wave behavior, two distinct
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Figure 3: Transmitted waves for different values of the α fractal dimension, compared with an experimental
incident wave (a) Highly permeable material, (b) Lowly permeable material

scenarios were analyzed. In the first scenario, depicted in Figure 3(a), a highly permeable
material with a thickness of 0.5 cm, a porosity of 0.95, a tortuosity of 1.05, and a viscous
characteristic length of 200 µm was used. The thermal length was set at Λ′ = 3Λ. In contrast,
the second scenario (Figure 3(b)) featured a very low permeability material with a thickness
of 0.5 cm, a porosity of 0.7, a tortuosity of 1.35, and a viscous characteristic length of 65
µm. In both scenarios, the experimental incident wave, measured using airborne transducers
with a frequency of 100 KHz in air, was compared to theoretical waves generated numerically
using the transmission coefficient for different values of α. The comparison of these scenarios
provides insight into how the self-similar structure of a porous medium affects the propagation
of waves through it, as well as the resulting attenuation and phase shifts.

The figures obtained from the analysis reveal some interesting observations about the impact
of fractal structure on wave behavior. Specifically, we observe that for values of α < 1, the
waves are generated ahead of the incident wave, indicating that their speed is higher than that
of sound in air. This behavior has been discussed earlier. However, when we compare how
fractal structure affects highly permeable versus low-permeability materials, we find significant
differences.

One major difference pertains to the amplitude of the waves. We see that for α < 1, the
attenuation in the permeable material increases. This suggests that there exists a relationship
between the fractal nature of the medium and the dissipation of energy in the wave. When
a wave travels through a self-similar porous material, it encounters a complex and irregular
structure that causes it to scatter and interact with the medium in a more intricate way. This
leads to a greater degree of energy loss, or attenuation, as the wave propagates through the
medium. Essentially, the more self-similar the porous material is, the more challenging it is for
the wave to propagate through it without losing energy. In contrast, a low-permeability material
exhibits even greater energy loss. This is because the tortuosity of such materials is relatively
large, making it more difficult for the wave to propagate through the medium.

In summary, the figures obtained from the analysis illustrate how the fractal structure of
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a porous material can affect the behavior of waves propagating through it. By studying two
distinct scenarios, we can see how the amplitude and attenuation of waves can vary depending
on the degree of self-similarity and the material’s properties.

The second contrast that can be observed between the permeable and low-permeability ma-
terials is related to the velocity of the wave, as shown in Figure ??. Surprisingly, we find
that the wave velocity increases even more in a highly permeable material, whereas in a low-
permeability material, the wave encounters more resistance, resulting in a slower wave speed
and greater attenuation. The low-permeability nature of the material impedes the propagation
of the wave, leading to a lower speed and greater energy loss as the wave traverses the medium.

In conclusion, the study sheds new light on the complex interplay between a material’s fractal
structure and its acoustic properties. The findings suggest that low-permeability materials may
have potential applications where wave propagation is critical. The observation that the fractal
porous material has a higher wave speed than a non-fractal porous material implies that the
fractal structure improves the material’s ability to transmit energy, making it more effective for
applications in which wave propagation is crucial, such as acoustics or telecommunications.

5 CONCLUSION

By using a fractal approach, it is possible to analyze the behavior of wave propagation within
a fractal porous material. The fractal dimension of the material, which is denoted by the param-
eter ”α”, plays a crucial role in determining the wave behavior. As the fractal dimension ”α”
approaches 1, the material becomes less self-similar, and the wave propagation speed decreases.
Conversely, as the fractal dimension ”α” approaches 0, the material becomes more self-similar,
and the wave propagation speed increases.

Furthermore, the degree of self-similarity, as represented by the fractal dimension ”α”, af-
fects wave attenuation. As the degree of self-similarity increases, wave attenuation also in-
creases, and vice versa. The behavior of wave propagation within a fractal porous material
is dependent on the material’s physical parameters. Generally, highly permeable materials
(low tortuosity and high characteristic lengths) allow for relatively faster wave propagation and
less attenuation, while materials with low permeability (high tortuosity and low characteristics
lengths result in slower wave propagation and more attenuation.

The study of wave propagation within fractal porous materials has significant implications
for various fields, such as materials science, geology, and acoustics. Understanding the wave
behavior in these materials can aid in designing materials for numerous applications, such as
sound insulation, building, biomechanics and oil recovery.
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