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Abstract

The present work is devoted to the problem of a steady two di-
mensional hydromagnetic convective flow of a viscous, incompressible
electrically conducting fluid past an inclined semi-infinite plate in the
presence of magnetic field with heat and mass transfer (double diffu-
sion). The convective flow starts under the simultaneous action of the
buoyancy forces caused by the variations in density due to tempera-
ture and species concentration differences. A scaling group of similarity
transformations is applied to the partial differential equations describ-
ing the problem under consideration, into a boundary value problem of
coupled ordinary differential equations, which along with the boundary
conditions are solved numerically by using shooting technique together
with Runge-Kutta fourth order method and effects of various parame-
ters on the flow fields are investigated and presented graphically.

Keywords: Buoyancy induced, Natural convection, Inclined surface, MHD
fluid, shooting technique, Runge-Kutta method, double diffusive, similarity
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1 Introduction

A fluid is a substance whose constituent particles may continuously change
their positions relative to one another when shear force is applied to it. As
fluid flows, heat is transferred from one point to another. Heat transfer in
fluids is called convection. The phenomenon of natural convection arises in
fluids when temperature change causes density variation leading to buoyancy
forces acting on the fluid particles. Basically, a free convection flow can be
described as a transport process in which fluid motion is caused simply by the
interaction of a difference in fluid density with the gravitational force field.
Often, the buoyancy stratification is achieved by a temperature field which
produces the density difference. Such temperature induced density differences
are evidenced in atmospheric and oceanic circulations, in the cooling of elec-
tronic components, and in the air currents which arise from a cooling object.
In addition, the density difference may also be due to a varying composition or
phase of a fluid, as in moist air rising, in ocean circulations due to differences
in salinity or in suspended particulate matter, or in a mixture of liquid and
vapour in a steam generator or processing device. In such flows, the velocity
and temperature fields are completely coupled since the flow arises as a re-
sult of buoyancy force, which is induced by temperature gradient between the
surface and the fluid.The study of heat transfer is integral part of natural con-
vection flow and belongs to the class of problems in boundary layer theory. A
large number of physical phenomena involve natural convection (Jaluria [12]),
which are enhanced and driven by internal heat generation.Fluids flowing in
engineering devices occur within magnetic field. Fluid flow in the presence of a
magnetic field is called hydro magnetic flow and the study of hydro magnetic
flows is called Magneto Hydro Dynamics (MHD). When a conductive fluid
moves through a magnetic field and an ionized gas is electrically conductive,
the fluid may be influenced by the magnetic field. Magnetohydrodynamics
free convection heat transfer flow is of considerable interest in the technical
field due to its frequent occurrence in industrial technology and geothermal
application, liquid metal fluids, MHD power generation systems and boundary
layer control in aerodynamics.
In nature there exist flows that are caused not only by temperature differences
but also by concentration differences. In industries many transport processes
exists in which heat and mass transfer take place simultaneously as a result
of combined buoyancy effect of thermal diffusion and mass diffusion through
chemical species. A comprehensive literature on various aspects of natural
convectional flow and its application coupled heat and mass transfer driven
by buoyancy due to temperature and concentration variations in a medium,
has several important application in geothermal and geophysical engineering
such as dispersion of dissolvent materials in flows, under ground disposal of
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nuclear waste and chemical engineering processes. Buoyancy forces resulting
from thermal and mass diffusion is of considerable interest in nature and many
industrial applications such as geophysics, solidification of binary alloys and
drying process.
In similarity solution methods we take advantage of this observation and at-
tempt to define an independent variable so that with a coordinate transfor-
mation we will transform the boundary layer equations (which are partial
differential equations originally) into ordinary differential equations (ODEs).
Similarity solutions are not possible for all flow fields and boundary condi-
tions. However, when a similarity solution is possible, then the solution can
be considered exact. Most studies have appeared to consider the single scalar
quantities or combined effects with vertical orientations, however, little has
been done on the combined effects of buoyancy induced forces and double dif-
fusive convection at an inclined infinite plate surface on the boundary layer
flow, which is the impetus of this paper.

2 Related Works

In light of these applications, Umemura and Law [2] developed a generalized
formulation for the natural convection boundary layer flow over a flat plate
with arbitrary inclination. They found that the flow characteristics depend
not only on the extent of inclination but also on the distance from the leading
edge. Hossain et al. [8] studied the free convection flow from an isothermal
plate inclined at a small angle to the horizontal. Recently, Anghel et al. [6]
presented a numerical solution of free convection flow past an inclined surface.
Very recently, Chen [3] performed an analysis to study the natural convec-
tion flow over a permeable inclined surface with variable wall temperature and
concentration. He observed that increasing the angle of inclination decreases
the effect of buoyancy force. Moreover, Bataller [10] presented a numerical
solution for the combined effects of thermal radiation and convective surface
heat transfer on the laminar boundary layer about a flat plate in a uniform
stream of fluid (Blasius flow) and about a moving plate in a quiescent ambient
fluid (Sakiadis flow). Elbashbeshy [7] studied the heat and mass transfer along
a vertical plate under the combined buoyancy effects of thermal and species
diffusion, in the presence of magnetic field. Aziz [1] investigated a similarity
solution for laminar thermal boundary layer over a flat plate with a convective
surface boundary condition. Ibrahim et al. [4] investigated the similarity re-
ductions for problems of radiative and magnetic field effects on free convection
and mass-transfer flow past a semi-infinite flat plate. They obtained new sim-
ilarity reductions and found an analytical solution for the uniform magnetic
field by using Lie group method. They also presented the numerical results
for the non-uniform magnetic field. The importance of similarity transforma-
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tions and their applications to partial differential equations was studied by
Pakdemirli and Yurusoy [9]. They investigated the special group transforma-
tions for producing similarity solutions. They also discussed spiral group of
transformations. In this article, application of scaling group of transformation
has been applied to combined Heat and mass transfer convection (double dif-
fusive convection) effects on steady buoyancy induced flow in an inclined plate
in the presence of MHD.

3 Geometry of the Problem

We consider a steady two-dimensional hydromagnetic flow of a viscous incom-
pressible, electrically conducting fluid past a semi-infinite inclined plate with
an acute angle γ to the vertical. The flow is assumed to be in the x-direction,
which is taken along the semi-infinite inclined plate and y-axis normal to it.
A magnetic field of uniform strength B0 is introduced normal to the direction
of the flow. In the analysis, we assume that the magnetic Reynolds num-
ber is much less than unity so that the induced magnetic field is neglected
in comparison to the applied magnetic field. It is also assumed that all fluid
properties are constant except that of the influence of the density variation
with temperature and concentration in the body force term. The surface is
maintained at a constant temperature Tw, which is higher than the constant
free stream temperature T∞ and the chemical species concentration at the
plate surface Cw is greater than the constant concentration C∞. Then un-
der the usual Boussinesq’s and boundary layer approximations, the governing
equations (see Ramadan and Chamkha [5] and Sivasankaran et al. [11]) are
given by:

Figure 3.1: Flow Geometry
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The boundary conditions at the plate surface and far into the cold fluid may
be written as

u(x, 0) = 0, v(x, 0) = 0, T (x, 0) = Tw,

C(x, 0) = Cw at y = 0 (3.5)

u(x, y)→ U∞ = 0, T (x, y)→ T∞, C(x, y)→ C∞ as

y →∞ (3.6)

We now introduce a two-dimensional stream function ψ(x, y) defined by u = ∂ψ
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and v = −∂ψ
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so that continuity equation is automatically satisfied. In order
to obtain a similarity solution of the problem we introduce the following non
dimensional variables:
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where η is a similarity variable, θ(η) and φ(η) are the dimensionless temper-
ature and concentration respectively, U∞ is the velocity of the fluid far away
from the plate. Now substituting equation (3.7) in equations (3.2)- (3.4) we
obtain:
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hence

v
∂u

∂y
=
U2
∞

2x
(ηf ′f ′′ − ff ′′) (3.9)

Again
∂2u

∂y2
=
∂3ψ

∂y3
= η3y

∂3ψ

∂η3

or
∂2u

∂y2
=
U2∞
νx

f ′′′

Thus

ν
∂2u

∂y2
=
U2∞
x

f ′′′ (3.10)
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Substituting these expressions numbered
(3.8-3.16) into momentum, energy and concentration equations, we find three
non-linear ordinary differential equations:
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where the prime symbol denotes differentiation with respect to η and
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in which Gr is the local thermal Grashof number, Gc is the solutal or local con-
centration Grashof number, Sc is the Schimdt number and Pr is the Prandtl
number, The corresponding boundary conditions become

f = 0, f ′ = 0, θ = 1, φ = 1 at η = 0

f ′ = 0, θ = 0, φ = 0 as η →∞ (3.20)

4 Numerical Procedure

The similarity transformation converts the non-linear partial differential equa-
tions (3.2 - 3.4) into ordinary differential equations. The set of non-linear
ordinary differential equations (3.17 - 3.19) with boundary conditions in (3.20)
have been solved numerically using shooting method, a technique that converts
the boundary value ordinary differential equations into a set of first order ini-
tial value ordinary differential equations with Secant iteration. The resulting
system is solved by the fourth-order Runge-Kutta method implemented in
Mathematica software.

5 Results and Discussion

To analyze the results of the numerical calculations, the dimensionless temper-
ature and concentration distributions for the flow are obtained from equations
(3.17 - 3.19) and are displayed in figures below for various governing param-
eters.Here, we assigned physically realistic numerical values to the embedded
parameters in the system in order to gain an insight into the flow structure with
respect to temperature and concentration profiles. To be precise, the values of
Prandtl number Pr were chosen for air (Pr = 0.71), and water (Pr = 7.0) .
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5.1 Effects of Parameter Variation on Temperature Pro-
files

Notice from these figures that the fluid temperature attains a distinctive maxi-
mum value in the vicinity of the plate and then decreases properly to approach
the free stream value away from the plate which satisfies the boundary condi-
tions.

Figure 5.1: Temperature profiles for different values of Pr

From figure 5.1, it is noted that an increase in the Prandtl number results in a
decrease of the thermal boundary layer thickness and in general lower average
temperature within the boundary layer. The reason is that smaller values of
Pr are equivalent to increasing the thermal conductivities, and therefore heat
is able to diffuse away from the heated plate more rapidly than for higher
values of Pr. Hence in the case of smaller Prandtl numbers the boundary
layer is thicker and the rate of heat transfer is reduced.

Figure 5.2: Temperature profiles for different values of Gr

Moreover, an increase in the intensity of buoyancy forces (Gr, Gc) causes a
decrease in the fluid temperature leading to a decaying thermal boundary layer
thickness as displayed in figures 5.2 and 5.3.
Figure 5.4 gives the dimensionless temperature profiles for Schmidt number.
The Schmidt number embodies the ratio of the momentum to the mass dif-
fusivity. The Schmidt number therefore quantifies the relative effectiveness
of momentum and mass transport by diffusion in the hydrodynamic and con-
centration (species) boundary layers. We observed from this figure that the
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Figure 5.3: Temperature profiles for different values of Gc

Figure 5.4: Temperature profiles for different values of Sc

temperature profile increases with the increase of the Schmidt number. We
also observed that the variation in the thermal boundary layer is very small
corresponding to a moderate change in Schmidt number. This shows that the
minor increasing effect on the temperature profile is greatly affected by the
presence of foreign species.

Figure 5.5: Temperature profiles for different values of γ

In figure 5.5, as the angle of inclination increases we observe that both the
thermal and concentration boundary layer thickness increase.
For different values of the magnetic field parameter M on the temperature
profiles see figure 5.6. It is observed that as the magnetic parameter increases,
the temperature also increases i.e. it is worthy to note that the thermal bound-
ary layer thickness increases with an increase in the intensity of the magnetic
field parameter, thus the temperature profiles increase with the increase of the
magnetic field parameter, which implies that the applied magnetic field tends
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Figure 5.6: Temperature profiles for different values of M

to heat the fluid, and thus reduces the heat transfer from the wall.

5.2 Effects of parameter variation on concentration pro-
files

Figures 5.7 - 5.11 depict chemical species concentration profiles against span
wise coordinate η for varying values physical parameters in the boundary layer.
The species concentration is highest at the plate surface and decreases to zero
far away from the plate satisfying the boundary condition.

Figure 5.7: Concentration profiles for different values of Pr

The increase in the Prandtl number has an adverse effect on the velocity and
temperature profiles of the fluid flow but it has opposite effect on the con-
centration profile of the fluid along the inclined plate as is clear in figure 5.7.
In other words, as we increase the Prandtl number (Pr), concentration profile
has increasing trend. i.e. as Pr increases the thickness of the concentration
boundary layer increases.
However we observed an increase in the concentration boundary layer when
the magnetic parameter was increased as graphically displayed in figure 5.8.
Physically, it is true due to the fact that the application of a transverse mag-
netic field to an electrically conducting fluid gives rise to a body force known
as a Lorentz hydromagnetic drag which acts in the tangential direction which
retards free convective transfer of fluid mass leaving some molecules stack to
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Figure 5.8: Concentration profiles for different values of M

the surface of the plate, resulting in the thickening of the concentration layer.

Figure 5.9: Concentration profiles for different values of Gr

Figure 5.10: Concentration profiles for different Gc

An increase in the values of thermal and solutal Grashof number (Gr, Gc) due
to buoyancy forces also causes a decrease in the chemical species concentration
leading to a decaying concentration boundary layer thickness. Figure 5.11
represent the effect of aligned angle, on concentration profiles. An increase
in thickness of the concentration boundary layer is observed up on increasing
the angle of inclination γ. i.e. the concentration of air boundary layer are
increased with an increase of γ.
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Figure 5.11: Concentration profiles for different values of γ
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