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Abstract

A general exact solution to the n-dimensional regular Cauchy prob-
lem of Euler-Poisson-Darboux (EPD) equation has been studied. Firstly,
the general exact solution for the one dimensional regular Cauchy prob-
lem of EPD has been worked out. The EPD which is a second order
Partial Differential Equation (PDE) is converted into an Ordinary Dif-
ferential Equation (ODE) by method of separation of variables. On
solving the ODE, the first complementary function (cf) is obtained di-
rectly. The second cf is obtained when the first derivative is eliminated
from the ODE and then the ODE solved. When the expression for
eliminating the first derivative is solved, a third term is obtained. The
general solution for the one dimensional regular Cauchy EPD is there-
fore the product of the three terms. The procedure has been repeated
for the two dimensional and n-dimensional cases. The general solutions
for these cases are products of four terms and n+2 terms respectively.
Finally, the general exact solution for n-dimensional regular Cauchy
wave equation when k = 0, has also been obtained.
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1 Introduction

The n-dimensional regular Cauchy problem of Euler-Poisson-Darboux equation
is given by

∂2U

∂x21
+
∂2U

∂x22
+ ...+

∂2U

∂x2n
=
∂2U

∂t2
+
k

t

∂U

∂t
(1)

U(x1, ..., xn, t) = f(x1, ...xn) (2)

∂U

∂t
(x1, ..., xn, t) = 0 (3)

where x1, x2, ...xn are points in Rn, k is a real parameter, t is a time param-
eter, f stands for function, U is diplacement of a wave perpendicular to its
direction of travel and Rn is Euclidean space. Miles and Young [1] considered
the generalised Euler-Poisson-Darboux equation of the form

L(u) =
∂2U

∂t2
+
k

t

∂U

∂t
−∇U − cU = 0 (4)

U(x, 0) = P (x), Ut(x, 0) = 0 (5)

where k and c are real parameters, k 6= −1,−3,−5, ..., P (x) is assumed to be a
polyharmonic function of order p and ∇ is the n dimensional Laplace operator.
Equations (4) and (5) had a solution of the form

U(x, t) =

p−1∑
n=0

(∇P )Un(t)

where Un(t) are determined by a system of Bessels equations. Dernek [2] solved
the initial boundary value problem given by

∇U = Utt +
k

t
Ut + g(x, t) (t > 0)

U(0, t) = U(a, t) = 0

U(x, 0) = f(x)

Ut(x, 0) = 0

where k < 1, k 6= −1,−2,−3, ... f and g are real analytic functions. Finite
Integral Transformation technique was used to find the solution. In our earlier
paper, Kweyu and Manyonge [3], we found a general analytical solution to
the one dimensional regular Cauchy problem of the Euler-Poisson Darboux
equation. The methods used were Similarity Transformation and elimination
of the first derivative. In the present article, the general exact solution for one
dimensional , two dimensional and n-dimensional EPD’s have been worked out.
The techniques used are method of separation of variables and elimination of
first derivative [4].
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2 General exact solutions for regular Cauchy

EPD for one-dimensional and two dimen-

sional cases

2.1 One dimensional EPD

The one dimensional regular Cauchy EPD is given by

∂2U

∂x2
=
∂2U

∂t2
+
k

t

∂U

∂t
(6)

U(x, t) = f(x) (7)

∂U

∂t
(x, t) = 0 (8)

Using the method of separation of variables , let U(x, t) = X(x)T (t) to be a
non trivial solution to equation (6) then

i. Uxx = X ′′T

ii. Utt = XT ′′

iii. Ut = XT ′

Putting (i) to (iii) in equation (6) gives

X ′′T = XT ′′ +
k

t
XT ′

Dividing through by XT, gives

X ′′

X
=
T ′′

T
+
k

t

T ′

T

Let
X ′′

X
=
T ′′

T
+
k

t

T ′

T
= A (9)

X ′′ −XA = 0

The Auxilliary Quadratic Equation (AQE) becomes

m2 − A = 0

m = ±
√
A

so that
X = c1e

√
Ax + c2e

−
√
Ax (10)
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where A, c1 and c2 are arbitrary constants. Equation (10) gives the first com-
plementary function. Again from equation (9)

T ′′

T
+
k

t

T ′

T
= A

which is solved by [4]

i. method of elimination of first derivative.

ii. finding second complementary function (cf).

iii. finding a term not part of complementary functions.

T ′′ +
k

t
T ′ − AT = 0

Let σ = k
t
, ς = −A and τ = 0 since

ς1 = ς − 1

2

dσ

dt
− σ2

4
=

1

2

k

t2
− k2

4t2
− A

τ1 = τe
1
2

∫
σdt = 0

Let T = ξη where ξ is the second cf and η, term which is not part of cf.

d2ξ

dt2
+

(
1

2

k

t2
− k2

4t2
− A

)
ξ = 0

The AQE is

m2 +

(
1

2

k

t2
− k2

4t2
− A

)
= 0

m = ±i
√

2k − k2 − 4At2

4t2

ξ = c3cos

√
2k − k2 − 4At2

4t2
t+ c4sin

√
2k − k2 − 4At2

4t2
t

where c3 and c4 are arbitrary constants

ξ = c3cos

√
2k − k2 − 4At2

2
+ c4sin

√
2k − k2 − 4At2

2
(11)

η = e−
k
2

∫
1
t
dt = e−

k
2
Int =

1

t
k
2

T = ξη =

(
c3cos

√
2k − k2 − 4At2

2
+ c4sin

√
2k − k2 − 4At2

2

)
1

t
k
2

(12)

The general exact solution for one dimensional EPD is the product of equation
(10) and (12) i.e

U(x, t) =
(
c1e
√
Ax + c2e

−
√
Ax
)(

c3cos

√
2k − k2 − 4At2

2
+ c4sin

√
2k − k2 − 4At2

2

)
1

t
k
2

(13)
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2.2 Two dimensional EPD

When we apply the same methods to the two dimensional EPD, the general
exact solution for the two dimensional EPD is given by

U(x, y, t) =
(
c5e
√
Cx + c6e

−
√
Cx
)(

c7cos
√
Dy + c8sin

√
Dy
)

(
c9cos

√
2k − k2 − 4Bt2

2
+ c10sin

√
2k − k2 − 4Bt2

2

)
1

t
k
2

(14)

where B,C,D, c5, c6, c7, c8, c9 and c10 are arbitrary constants.

3 General exact solution for n- dimensional

EPD

Let U(x1, x2, x3, ...xn, t) = X1(x1)X2(x2)X3(x3)...Xn(xn)T (t) to be a non triv-
ial solution to the n-dimensional EPD equation, then

i Ux1x1 = (X ′′1X2X3...Xn)T

ii Ux2x2 = (X1X
′′
2X3...Xn)T

iii Ux3x3 = (X1X2X
′′
3 ...Xn)T

iv .

v .

vi .

vii Uxnxn = (X1X2X3...X
′′
n)T

Putting (i) to (vii) in equation (1) gives

(X ′′1X2X3...Xn)T + (X1X
′′
2X3...Xn)T + (X1X2X

′′
3 ...Xn)T + ...(X1X2X3...X

′′
n)T

= (X1X2X3...Xn)T ′′ +
k

t
(X1X2X3...Xn)T ′

Dividing through by (X1X2X3...Xn)T , we obtain

X ′′1
X1

+
X ′′2
X2

+
X ′′3
X3

+ ...+
X ′′n
Xn

=
T ′′

T
+
k

t

T ′

T

Let
X ′′1
X1

+
X ′′2
X2

+
X ′′3
X3

+ ...+
X ′′n
Xn

=
T ′′

T
+
k

t

T ′

T
= α
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Let
X ′′1
X1

+
X ′′2
X2

+
X ′′3
X3

+ ... = β = α− X ′′n
Xn

X ′′n + (β − α)Xn = 0

Let
β − α = γ

X ′′n + γXn = 0

Xn = cn−1 cos
√
γxn + cn sin

√
γxn

α, β, γ, cn−1 and cn are arbitrary constants. From

X ′′1
X1

+
X ′′2
X2

+
X ′′3
X3

= β

Let
X ′′1
X1

+
X ′′2
X2

= β − X ′′3
X3

= δ

X ′′3 + (δ − β)X3 = 0

Let δ − β = ε
X3 = c11 cos

√
εx3 + c12 sin

√
εx3

δ, ε, c11 and c12 are arbitrary constants. From

X ′′1
X1

+
X ′′2
X2

= δ

Let
X ′′1
X1

= δ − X ′′2
X2

= ζ

X ′′2 + (ζ − δ)X2 = 0

Let ζ − δ = η
X2 = c13 cos

√
ηx2 + c14 sin

√
ηx2

ζ, η, c13 and c14 are arbitrary constants. From

X ′′1
X1

= ζ

X1 = c15e
√
ζx1 + c16e

−
√
ζx1

From
T ′′

T
+
k

t

T ′

T
= α

T =

(
c17cos

√
2k − k2 − 4αt2

2
+ c18sin

√
2k − k2 − 4αt2

2

)
1

t
k
2
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The general exact solution for n-dimensional EPD is therefore given by

U(x1, x2, x3, ...xn, t) = (c15e
√
ζx1 + c16e

−
√
ζx1) (c13 cos

√
ηx2 + c14 sin

√
ηx2)(

c11 cos
√
εx3 + c12 sin

√
εx3
)
... (cn−1 cos

√
γxn + cn sin

√
γxn)(

c17cos

√
2k − k2 − 4αt2

2
+ c18sin

√
2k − k2 − 4αt2

2

)
1

t
k
2

(15)

The subscripts of arbitrary constants of equation (15) are now written in terms
of n so that it becomes a generalized equation, it now takes the form

U(x1, x2, x3, ...xn, t) =

(
cn−10cos

√
2k − k2 − 4αt2

2
+ cn−9sin

√
2k − k2 − 4αt2

2

)
(cn−8e

√
ζx1 + cn−7e

−
√
ζx1) (cn−6 cos

√
ηx2 + cn−5 sin

√
ηx2)(

cn−4 cos
√
εx3 + cn−3 sin

√
εx3
)
... (cn−1 cos

√
γxn + cn sin

√
γxn)

1

t
k
2

(16)

Results and Conclusion

i. The general exact solution to the n-dimensional regular Cauchy problem
of the EPD is given by equation (16).

ii. When we put k = 0 in equation (16), we obtain the general exact solution
to the n-dimensional wave equation. The equation takes the form

U(x1, x2, x3, ...xn, t) =
(
cn−10coshtα

1
2 + icn−9sinhtα

1
2

)
(cn−8e

√
ζx1 + cn−7e

−
√
ζx1) (cn−6 cos

√
ηx2 + cn−5 sin

√
ηx2)(

cn−4 cos
√
εx3 + cn−3 sin

√
εx3
)
... (cn−1 cos

√
γxn + cn sin

√
γxn) (17)

since [4] sin itα
1
2 = i sinh tα

1
2 and cos itα

1
2 = cosh tα

1
2 .

References

[1] C. Young and E. Miles, On a Cauchy problem for a generalised Euler
-Poisson-Darboux equation with polyharmonic data, Journal of Differen-
tial Equations, 2 (1966), 482-487.
https://doi.org/10.1016/0022-0396(66)90056-8

[2] N. Dernek, On the solution of the EPD equation using Finite Integral
Transformations, Tr. J. of Mathematics, 21 (1997), 317-324.



1982 David Kweyu and A. W. Manyonge

[3] D. Kweyu and A.W. Manyonge, General analytical solution for the one
dimensional regular Cauchy problem of Euler-Poisson-Darboux equation,
Applied Mathematical Sciences, 11 (2017), no. 12, 561-570.
https://doi.org/10.12988/ams.2017.7133

[4] K. Dass, Advanced Engineering Mathematics, S. Chand and Company
PVT. Ltd, New Delhi, 2013.

Received: May 21, 2017; Published: August 3, 2017


