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Abstract 

Silicon carbide (SiC) has become a suitable replacement to silicon as a substrate for manufacture of 

microelectromechanical systems (MEMS) that operate in harsh environmental conditions, owing to its 

better mechanical properties such as excellent wear resistance. However, just like silicon, SiC is also 

brittle, a property that limits its application as a substrate for manufacture of flexible MEMS. In this 

study, we explored the thermal properties as well as the pressure-dependent elastic constants of 

cadmium stannate (Cd2SnO4) for the first time within the quantum espresso code. The result showed that 

the elastic constants of SiC are much higher than those of Cd2SnO4. The properties of SiC were found to 

be more sensitive to the applied pressure compared those of Cd2SnO4, implying that it is less 

mechanically and thermally stable with the applied pressure compared to Cd2SnO4, and therefore, less 

appealing compared to Cd2SnO4 for manufacture of most MEMS. 

1.0 Introduction 

The world of microelectromechanical systems (MEMS) is becoming mature enough to handle the 

current and future demands regarding its manufacturing techniques as well as the right substrate 

materials for the MEMS devices. Silicon (Si) is becoming less attractive as a substrate for the 

manufacture of MEMS devices due to it narrower band gap, brittleness, as well as its loss of mechanical 

reliability in harsh environmental conditions such as at high temperatures of above 500 
o
C (Cimalla, 

Pezoldt and Ambacher, 2007) (Gerberich et al., 2012). These harsh-environment MEMS include sensors 

and actuators such as those in combustion processes, gas turbine control, and oil industry. The main 

advantages of micro components compared to the conventional macro components include their higher 

reliability, affordability as well as their ability to incorporate more complex functions (Varadan, 2003).  

 



3 

 

Silicon carbide (SiC) is an excellent wide band gap semiconductor with better mechanical, chemical and 

thermal stability. It has already been explored as a substrate material for MEMS. Moreover, it has 

already been incorporated into the Si micromachining technology (Cimalla, Pezoldt and Ambacher, 

2007). The much higher Youngs modulus of SiC of 410-422 GPa (Messaoud et al., 2019) (Reddy, 2007) 

implies that it can maintain a linear relationship between the applied load and the induced deformation 

compared to Si, which has an effective Youngs modulus of only 130 GPa (Hopcroft, Nix and Kenny, 

2010). Moreover, SiC has a large ratio of Young’s modulus to density, which results to higher resonant 

frequencies with better quality factors for beam structures (Coakley, Splett and Janezic, 2003). This 

property is particularly useful for micromechanical resonators as frequency filtering in high 

communication transceivers. Downhole pressure sensors and diesel engine in-cylinder pressure sensor 

movement applications operate under high pressure regions of above 0.3 GPa.  

However, one of the main shortcomings of SiC as a MEMS material is it brittleness, just like Si. It is 

therefore not suitable for manufacture of flexible MEMS such as sensors, actuators, micro fluidic 

components, and biomedical MEMS. Previous studies have shown that flexible substrates are sensitive 

to temperature and therefore, only low-temperature materials such as polymers are currently being 

utlilized for such MEMS (Tu, 2014). In this study, we explored the pressure-dependent elastic constants 

as well as thermal properties of cadmium stannate (Cd2SnO4), a wide band gap and flexible 

semiconductor, which is a highly attractive candidate as a substrate for the manufacture of MEMS 

sensors and actuators. To the best of our knowledge, there is no record on both pressure-dependent 

elastic constants as well as thermal properties of Cd2SnO4. For comparison, we also present the same 

properties for SiC. The specific objectives of the study were (i) to find out the effect of applied pressure 

on the elastic constants of Cd2SnO4, (ii) to determine the melting temperature of Cd2SnO4, and (iii) to 

investigate the thermal properties of Cd2SnO4. The rest of the paper is organized as follows: In section 
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two, we present the materials and methods that were employed in order to determine the elastic 

constants as functions of the applied pressure as well as the thermal properties of Cd2SnO4 and SiC. In 

section three, we present the main findings from the study as well as discussion of the results. The 

conclusions of the main findings are presented in section four. 

2.0 Materials and methods 

2.1 Structural optimization 

The calculation of elastic constants was performed within the generalized gradient approximation 

(GGA) as implemented in the quantum espresso code (Giannozzi et al., 2017). The crystallographic files 

for both compounds were obtained from the crystallography open database (Crystallography.net). The 

orthorhombic Cd2SnO4 adopts a pbam space group (number 55), while the cubic SiC adopts an F-43m 

space group (number 216). The experimental lattice parameters for Cd2SnO4 were: a = 10.484 a.u, b = 

18.693 a.u and c = 6.039 a.u, with a unit cell volume of 1,183.508 a.u
3
 (Troemel, 1969). For the SiC 

cell, the experimental lattice parameter was a = 8.2401 a.u, with a unit cell volume of 559.4966 a.u
3 

(Burdick and Owen, 1918). The 3D structures of the two unit cells are shown in figure 1. 

 

Figure 1: The crystal structures of (a) The orthorhombic cadmium stannate and (b) The cubic silicon 

carbide as viewed in Burai, a GUI for quantum espresso. The green spheres represent the cadmium 
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atoms, the blue spheres represent the tin atoms, the red spheres represent the oxygen atoms, the 

brown spheres represent the silicon atoms, while the grey spheres represent the carbon atoms. 

The interactions between electrons and ions were described by scalar-relativistic, norm-conserving 

ultrasoft pseudopotentials. The GGA by Perdew-Burke-Ernzerhof functional for SOLids (PBESOL) 

functionals (Yoyo, Hiroyuki, Yu, Isao and Fumiyaso, 2017) were used for both cells. The Kohn-Sham 

wave functions were expanded on a plane-wave basis set up to a kinetic energy cut-off of 60 Ry with a 

total energy accuracy of 2.1 x 10
-3

 Ry for Cd2SnO4. For SiC, we used a kinetic energy cut-off of 80 Ry 

with a total energy accuracy of 1.8 x 10
-4

 Ry. The Brillouin zone integration was performed over an 

unshifted 5 x 3 x 9 Monkhorst-Pack mesh for Cd2SnO4 and 8 x 8 x 8 for SiC (Monkhorst and Pack, 

1976). For optimization of atomic coordinates, variable cell relaxation was performed on the input files 

using the BFGS algorithm. 

2.2 Calculation of elastic constants as a function of pressure 

The stress-stain method by Ongwen, Ogam, and Otunga (2021) was applied in the calculation of elastic 

constants at the applied pressures of 0, 10, 20, 30, 40 and 50 GPa. Small strains were applied to the 

crystals so as to remain within the linear regime of the Hooke’s law. The strains were varied from -0.006 

to 0.006 in steps of 0.003 (5 data points), after which stresses were generated. The calculated stress-

strain data were fitted (linear fit) in order to obtain the elastic stiffness constants (   ). Understanding of 

the internal strains in a material can be made possible by application of the Kleinman’s equation 

(Kleinman, 1962). The equation is expressed as:  

  
        

         
,     (1) 

where     and     are elastic stiffness constants. The elastic stiffness constant     is related to elasticity 

of the length (linear resistance to compression), while     is related to the shape of the crystal. 
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Melting temperature (Tm) of a material is the temperature at which a solid changes into a liquid. It 

depends on the strength of the bonds holding the atoms of the solid together, where stronger bonds result 

into higher values of Tm. Tm can be determined from the relationship between the elastic stiffness 

constants as (Parvin and Naqib, 2019): 

                 (2) 

where B is the bulk modulus. 

2.3 Calculation of thermal properties 

Thermal properties of the two compounds were determined within the quasi-harmonic approximation 

(Allen, 2020). The Debye temperature, also known as the characteristic temperature, is the temperature 

at which a pure cubic crystal's atomic heat is equal to 5.67 calories per gram of atoms per degree. It is a 

fundamental property of matter that governs a variety of solid properties, including specific heat, electric 

conductivity, thermal conductivity, X-ray spectral line widening, and elastic properties. The Debye 

model for the heat capacity of solids explains the specific heat capacity of solids at low temperature in 

terms of the quantum statistical mechanics of an ensemble of harmonic oscillators. At these 

temperatures, the solid can be viewed as a gas of non-interacting quasi-particles, which perfectly 

conforms to the Bose-Einstein statistics, which relates to the phonons. The phonon and frequency are 

connected by the Lyddane-Sachs-Teller relation (Kittel, 2005) (Degheidy, Elkenany, Madkour and 

AbuAli, 2018). For a harmonic oscillator of angular frequency ω, its internal energy in thermal 

equilibrium at temperature T is given by (Baroni, Giannozzi and Isaev, 2009):  

  
  

  
 

  

   

  
       

     (3) 
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Upon differentiation of equation (3) with respect to temperature the sum over all the possible values of 

the phonon momentum in the Brillouin zone (BZ), we obtain the specific heat capacity of a solid at 

constant volume as:  

   
 

 
 

  

                ,   (4) 

where ω(b,ν) is the frequency of the ν-th mode (phonon) at point q in the BZ. p′(b,ν) is given by the 

expression:         
 

  
  

  

  
            

  

 , and the sum is extended to the first BZ (a uniquely 

defined primitive cell in the reciprocal space). If it is assumed that there are three degenerate modes at 

each point on the BZ, each with frequency ω(b,ν) = c|b|, where c is the sound velocity, and then convert 

the sum in equation (4) into an integral, we end up with an expression for the specific heat capacity at 

constant volume in the form:  

      
 

 
 
    

 
   

 

  
 
 

,   (5) 

where ɸ is the volume of the unit cell. The symbol    is the Debye temperature, which is given by:  

    
 

  
   

 

   
 
 

    (6) 

The Gibbs free energy (G) of a crystal can be determined from the relation:  

            
 

 
 

        

                  
         

      , (7) 

where Z indicates any global static constraint upon which vibrational frequencies may depend, and 

U0(Z) is the zero-temperature energy of the crystal as a function of Z.  
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3.0 Results and discussion 

3.1 Structural properties 

Figure 2 shows the graphs of total energy per atom against the normalized unit cell volumes for the two 

compounds at zero GPa pressure, which shows that SiC has much lower total energy per atom compared 

to Cd2SnO4. By fitting the volume data of the two compounds into the third order Birch-Murnaghan 

equation of state (Birch, 1947), the equilibrium lattice parameters for the two crystals were obtained.  
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Figure 2: Total energy per atom against normalized unit cell volume at zero GPa pressure for: (a) 

cadmium stannate, and (b) silicon carbide. 

Table 1 shows the variation of the lattice parameters extracted from figure 2, the bulk moduli, and the 

densities of Cd2SnO4 and SiC with the applied pressure. The table shows that the calculated values in 

this work are in excellent agreement with those of the previous studies at 0 GPa pressure. Although it is 

common knowledge that GGA overestimates the values of the lattice parameters compared to the 

experimental values and hence, underestimation of the bulk moduli, the same was not observed in the 

present study. This can be attributed to the improvement in the accuracy of the pseudopotentials as well 

as the ab initio calculations over time. The density of Cd2SnO4 calculated in this study is observed to be 
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much higher (2.37 times) than that of SiC. However, there is no record in the literature about the density 

of Cd2SnO4 at the moment for comparison. This study thus forms the basis for future reference. 

Table 1: The calculated lattice parameter (a), the bulk modulus (B), the derivative of the bulk 

modulus with respect to pressure (B’), and the density (ρ) of the two compounds as a function of the 

applied pressure. 

Material p (GPa)  a (Å) B (GPa) B’ ρ (kg/m
3
) 

Cd2SnO4 0 5.574 (5.567
a
) (5.573

b
) 149.4 (150.3

b
) 4.42 7630.52 

 10 5.267 191.3 4.22  

 20 5.229 496.4 15.0  

 30 5.218 731.4 15.0  

 40 5.213 968.1 15.0  

 50 5.209 1203.6 15.0  

SiC 0 4.357 (4.36
c
) 221.8 (222

d
) 4.03 3215.89 (3210

c
) 

 10 4.297 262.2 4.03  

 20 4.246 302.5 4.03  

 30 4.203 342.8 4.03  

 40 4.174 427.3 5.13  

 50 4.163 578.8 7.13  

 

(a) Experimental data from [Jeyadheepan and Sanjeeviraja, 2014] 

(b) Computational data from [Ongwen, Ogam and Otunga, 2021] 

(c) Data from [Jiang and Cheung, 2009] 
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(d) Data from [Clayton, 2010] 

Both compounds experienced a decrease in the lattice parameters with increase in the applied pressure. 

Cd2SnO4 underwent a 6.548% shrinkage, while SiC underwent a 4.660% shrinkage when the applied 

pressure increased from 0 to 50 GPa. This implies that the volumes of the crystals reduce as the applied 

pressure increases. The shrinkage of the lattice parameters with increase in the applied pressure has also 

been reported (Manyali and Sifuna, 2019). The fact that Cd2SnO4 shrunk more than SiC for the same 

amount of the applied pressure implies that Cd2SnO4 is more compressible compared to SiC. 

3.2 Pressure-dependent elastic constants 

Table 2 shows the elastic stiffness constants of the two compounds as a function of the applied pressure. 

For orthorhombic Cd2SnO4, we have the nine independent elastic stiffness constants (   ,    ,    ,    , 

   ,    ,    ,     and    ), while for the cubic SiC, the elastic stiffness constants reduce to three 

(           ,            , and            ). The elastic stiffness constants of both crystals 

increased with increase in the applied pressure. SiC possesses much higher elastic stiffness constants 

than Cd2SnO4. Since large values of the elastic stiffness constants imply high incompressibility, it 

implies that SiC is much more incompressible than Cd2SnO4, and thus, a greater external force is needed 

to deform it, which can be confirmed by the lower decrease in its lattice parameter in table 1. For 

Cd2SnO4,     is slightly larger than    , implying that there are slightly stronger bonds along the [001] 

direction than along the [100] direction. As the applied pressure increases, the bonds between the atoms 

become shorter for both crystals, a phenomenon that leads to resistance in the change in their volumes. 

This consequently leads to an increase in their elastic stiffness constants with increase in the applied 

pressure. 
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Table 2: The calculated elastic stiffness constants (in GPa) of cadmium stannate and silicon carbide 

as functions of the applied pressure 

Material p (GPa c11 c22 c33 c44 c55 c66 c12 c13 c23 

Cd2SnO4 0 268.6 186.1 272.4 62.9 29.2 58.5 117.8 99.3 104.2 

 10 322.3 206.9 312.8 67.5 32.3 70.0 171.1 141.9 148.9 

 20 331.7 210.0 322.2 68.0 33.3 71.7 176.3 150.1 158.7 

 30 334.7 213.0 324.0 68.1 33.6 72.3 178.3 152.5 158.8 

 40 336.0 216.0 324.2 68.2 33.5 72.4 179.0 153.5 159.0 

 50 336.7 217.0 324.4 68.4 33.6 72.5 179.7 154.1 159.7 

SiC 0 387.5 387.5 387.5 139.3 139.3 139.3 243.9 243.9 243.9 

 10 426.5 426.5 426.5 177.0 177.0 177.0 260.0 260.0 260.0 

 20 461.7 461.7 461.7 212.4 212.4 212.4 271.9 271.9 271.9 

 30 494.3 494.3 494.3 246.9 246.9 246.9 281.3 281.3 281.3 

 40 516.7 516.7 516.7 271.3 271.3 271.3 286.9 286.9 286.9 

 50 525.7 525.7 525.7 281.1 281.1 281.1 289.0 289.0 289.0 

 

The calculated elastic constants derived from the elastic stiffness constants in table 2 are presented in 

table 3. The formulas for the calculation of elastic constants from the elastic stiffness constants are 

found elsewhere (Ongwen, Ogam and Otunga, 2021). All the four elastic constants (the bulk modulus 

(B), the shear modulus (G), the Young’s modulus (E) and the Poisson ratio(μ)) increase as the applied 

pressure increases. The increase in the elastic constants with increase in the applied pressure has also 
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been reported by Elkenany (2021). The bulk modulus of Cd2SnO4 is lower than that of SiC. This shows 

that it is less incompressible compared to SiC. Both compounds become more incompressible with 

increase in the applied pressure. The bulk modulus of Cd2SnO4 increases by 34.91% for the increase in 

the applied pressure from 0 to 50 GPa, while that of SiC increase by 63.38% within the same pressure 

range. This indicates that SiC becomes much more incompressible with increase in the applied pressure. 

Higher values of the bulk modulus are in high demand for sensors and actuators that work under harsh 

environment. The shear modulus, which increases with increase in the applied pressure, indicates that 

the materials become more resistant to shape change. The shear modulus of Cd2SnO4 increases by 

4.84%, while that of SiC increases by 10.06%, implying that SiC becomes much more resistant to shape 

change compared to Cd2SnO4.  

Table 3: The calculated elastic constants of cadmium stannate as functions of the applied pressure. G 

is the shear modulus (in GPa), E is the Young’s modulus (in GPa), μ is the Poisson ratio, n is the 

Pugh’s ratio, and HV is the Vickers hardness. ζ is the Kleinman parameter. 

Material P (GPa) B G E μ N HV ζ 

Cd2SnO4 0 150.1 

(150.3
a
) 

53.7 

(53.7
a
) 

143.7 

(143.8
a
) 

0.340 

(0.341
a
) 

2.780 

(2.802
a
) 

3.28 

(3.16
a
) 

0.5724 

 10 191.7 54.9 150.5 0.369 3.488 1.83 0.6508 

 20 199.7 55.8 153.2 0.372 3.581 1.73 0.6514 

 30 200.5 56.1 153.8 0.372 3.578 1.74 0.6524 

 40 201.7 56.2 154.2 0.372 3.590 1.73 0.6524 

 50 202.5 56.3 154.4 0.373 3.600 1.73 0.6532 

SiC 0 222.0 185.9 435.9 0.172 1.194 31.56 0.7308 
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(222
d
) (179

e
) (410-422

f
) (0.16

e
) (32

e
) 

 10 260.0 193.6 465.1 0.201 1.344 27.82 0.7150 

 20 295.5 198.8 486.8 0.224 1.486 24.82 0.6984 

 30 329.4 202.2 503.3 0.244 1.628 22.26 0.6823 

 40 353.1 204.1 512.9 0.256 1.731 20.64 0.6710 

 50 362.7 204.6 516.3 0.261 1.771 20.05 0.6665 

 

(e) Data from [Munro, 1997]  

(f) Data from [Reddy, 2007] 

The Young’s modulus increases by 5.76% for Cd2SnO4 and by 18.44% for SiC. This implies that SiC 

becomes more resistant to longitudinal tension with increase in the applied pressure compared to 

Cd2SnO4. The ductility of the two compounds was tested using both the Poisson’s ratio as well as the 

Pugh’s ratio. For the Poisson’s ratio, a value of 0.27 and above implies that a material is ductile, while a 

value of less than 0.27 shows that the material is brittle. For the Pugh’s ratio, a value of more than 1.75 

is an indication of ductility, while a value of less than 1.75 indicates brittleness (Pugh, 1954). From table 

3, we observe that Cd2SnO4 is ductile at 0 GPa pressure, while SiC is brittle. Both materials become 

more ductile with increase in the applied pressure. SiC just reaches the boundary of ductility/ brittles 

(1.771) at 50 GPa pressure, while Cd2SnO4 becomes much more ductile as the applied pressure 

approaches 50 GPa.  

The Poisson’s ratios of the two crystals increase by 9.71 % and 51.74 % for Cd2SnO4 and SiC 

respectively, while the Pugh’s ratios increase by 29.50 % and 48.32 % for Cd2SnO4 and SiC 

respectively. Although both materials become more ductile at high pressures, there is a corresponding 
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drop in their Vickers hardness, which implies that they become less hard, with lower wear resistance and 

hence, more vulnerable to scratch and abrasion, a property that is not desirable for MEMS such as 

micromotors and coating materials (Jiang and Cheung, 2009). The Vickers hardness decreases by 

89.60% and 57.41% for Cd2SnO4 and SiC respectively as the applied pressure increases from 0 to 50 

GPa.  

The Kleinman parameter explains the resistance that a material offers against the forces that tend to 

stretch or bend it. As the value nears 1, it shows that the contribution of bond stretching or bond 

contraction to resist the applied stress becomes insignificant. It can be observed that the Kleinman 

parameter for SiC is closer to 1 compared to that of Cd2SnO4. Thus, its mechanical strength is 

dominated by bond stretching/ contraction. However, the Kleinman parameter values for Cd2SnO4 

increases with increase in the applied pressure, while that for SiC decreases. This implies that the 

resistance that Cd2SnO4 offers against the forces of stretching or bending increases with increase in the 

applied pressure, unlike that of SiC that reduces with increase in the applied pressure.  Figure 3 shows 

the variation of the elastic constants with the applied pressure, which shows that the elastic constants of 

Cd2SnO4 have steeper slopes than those of SiC at lower pressures, although they tend to flatten as the 

applied pressure increases. 
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Figure 3: The computed elastic constants, the Vickers hardness (HV) and the Pugh’s ratio (n) of 

cadmium stannate and silicon carbide as functions of the applied pressure 

3.3 Thermal properties 

Table 4 shows the variation of the Debye temperatures as well as the melting temperatures of the two 

compounds. The higher value of the Debye temperature for SiC indicates that the optical phonons in SiC 

have a higher frequency than those in Cd2SnO4, which implies that they require greater energy to 

activate as compared to those of Cd2SnO4. This further confirms the higher stiffness of SiC compared to 

Cd2SnO4. The calculated Debye temperature of SiC obtained in this study is 3.742% lower than the 

value of 1194.8 K that has been reported by Peng et al. (2012). The Debye temperatures of both 

compounds increase with increase in the applied pressure, which implies that they become stiffer as the 

applied pressure increases.  

Table 4. The calculated Debye temperature (   in K) and melting temperature (Tm in K) 

 p (GPa) 0 10 20 30 40 50 
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   Cd2SnO4 377.5 379.0 381.8 382.3 382.9 383.1 

SiC 1151.7 1148.9 1159.3 1165.0 1167.4 1168.0 

Tm Cd2SnO4 2304 2695 2769 2778 2788 2797 

SiC 2974 3328 3663 3970 4193 4287 

 

The melting temperatures of the two compounds were calculated from their bulk moduli using equation 

2, where we added the uncertainty of 300 K to the calculated values so as to obtain a good match 

between the experimental values that already exist in the literature and the computed values for SiC 

obtained in this study. As table 4 shows, the calculated melting temperature of SiC is 4.338% lower than 

that reported by Munro (1997) at 3103 K. We therefore calculated the melting temperature of Cd2SnO4 

using the same formula. The higher melting temperature of SiC shows that it has greater intermolecular 

forces and therefore, least vapour pressure compared to Cd2SnO4.  

The relatively higher melting temperature of Cd2SnO4 compared to that of silicon at 1687 K (Yang and 

Jiang, 2005) shows that it is also suitable for high-temperature applications. However, the values 

obtained in this study can be treated as an estimate, since the formula used in calculating them has a 

large uncertainty of 300 K. Unfortunately, there is no data in the literature for comparison with the 

melting temperature of Cd2SnO4. This study thus forms a basis for future reference. There is a consistent 

increase in the melting temperature with increase in the applied pressure for both compounds. This is 

because as the applied pressure increases, the strength of interatomic forces that exist between the atoms 

of the compounds increases (as already been observed in the elastic constants). This makes it more 

difficult for the atoms to break away from one another, leading to higher melting temperature. 

Since the quasi-harmonic Debye model remains fully applicable within the temperature range of 0 to 

800 K, the thermal properties in this study were calculated within the same range. Figure 4a shows the 
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Debye vibrational energy for Cd2SnO4, which increases non-linearly with temperature below 200 K. 

This in contrast to the Gibb’s free energy (figure 4b), which decreases non-linearly within the whole 

temperature range. The entropy (figure 4c) tends to zero at 0 K, which implies that there is very little or 

no lattice disorder at 0 K temperature, which is in line with the third law of thermodynamics (the law 

states that the entropy of perfect crystals tends to zero at the absolute zero temperature). With increase in 

temperature, the system becomes disorderly and thus, the entropy increases.   
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Figure 4: Thermal properties of cadmium stannate. Evib is the vibrational energy, G is the Gibbs free 

energy, S is the entropy, and cv is the specific heat capacity at constant volume 

Specific heat capacity of a material relates to the absorption of heat. The specific heat capacity at 

constant volume (figure 4d) tends to zero as the absolute temperature tends to zero. This is quite in 

agreement with the Debye model (Kittel, 1996). The specific heat capacity of Cd2SnO4 exhibits a cubic 
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dependence of temperature as the temperature tends to zero. This implies that the phonon contribution is 

predominant here. The sharp increase in the specific heat capacity with temperature up to about 300 K is 

due to phonon thermal vibrations. As the temperature rises above 500 K, the anharmonic effect is 

suppressed and thus, the specific heat capacity approaches the Dulong-Petit classical limit (Dulong and 

Petit, 1819). At the intermediate temperature between 200 to 400 K, the atomic lattice vibrations are the 

main contributors to the specific heat capacity. 

Figure 5 shows the variation of the thermal properties of SiC with temperature. The trend for the 

vibrational energy curve (figure 5a) is similar to that of Cd2SnO4 in figure 4a, except that the curve 

become linear at a higher temperature (beyond 200 K) as compared to that of Cd2SnO4 that becomes 

linear at about 100 K. Moreover, pressure seems to have a significant effect on the vibrational energy of 

SiC, especially at low temperature (the curves separate), a phenomenon that is not observed in Cd2SnO4 

(figure 4a). Just as with Cd2SnO4, the Gibbs free energy for SiC (figure 5b) decreases non-linearly with 

increase in temperature. However, pressure exhibits an effect on the Gibbs free energy, as the Gibbs free 

energy increases with increase in the applied pressure, a phenomenon that is not observed for Cd2SnO4 

(figure 4b). 
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Figure 5: Thermal properties of silicon carbide. Evib is the vibrational energy, G is the Gibbs free 

energy, S is the entropy and cv is the specific heat capacity at constant volume 

 

Just as for Cd2SnO4 (figure 4c), the entropy for SiC (figure 5c) tends to zero as temperature tends to 

zero. However, unlike for Cd2SnO4 where the pressure seems not to have an effect on the entropy, the 

entropy for SiC decreases with increase in the applied pressure at high temperature. The specific heat 

capacity of SiC also tends to zero as the temperature tends to zero (figure 5d), although the effect of 

pressure is not prominent in this case. Thus, both elastic and thermal properties of SiC have been found 

to be more sensitive to the applied pressure compared to those of Cd2SnO4. Table 5 shows the calculated 

thermal properties of Cd2SnO4 and SiC in this study. 

Table 5: The calculated thermal properties of cadmium stannate and silicon carbide. Evib and G are 

in Ry/cell, while S and cv are in Ry/cell/K 

Compound Evib (x 10
-2

) G (x 10
-2

) S (x 10
-4

) cv (x 10
-4

) 
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Cd2SnO4 8.557 -0.452 3.024 2.462 

SiC 1.832 1.515 0.107 0.201 

 

4.0 Conclusion 

The results of this study showed that both the mechanical properties (bulk modulus, shear modulus, 

Young’s modulus and Vickers hardness) and thermal properties (Debye temperature and melting 

temperature) of SiC are much higher than those of Cd2SnO4. It is thus ideal for the manufacture of 

MEMS for harsh environmental conditions. However, just like Si, SiC in this study has shown to be both 

mechanically and thermally unstable. It undergoes a significant change in elastic and thermal properties 

with change in the applied pressure. Cd2SnO4 on the other hand, undergoes a much lower change in its 

elastic as well as thermal properties as the applied pressure changes. Both materials become ductile with 

increase in the applied pressure. SiC just reaches the ductile/ brittle boundary of 1.75 (Pugh’s ratio) at 

the applied pressure of 50 GPa (up from 1.34 at 0 GPa), while Cd2SnO4 is highly ductile even at 0 GPa 

pressure, with a Pugh’s ratio of 2.78, and it increases to 3.60 at 50 GPa pressure. Thus, Cd2SnO4 can be 

a better substrate to SiC in the manufacture of flexible MEMS such as sensors, actuators, microfluidic 

components and biomedical MEMS, owing to its ductile nature. Moreover, since it is both mechanically 

and thermally more stable than SiC, it can form a better substrate for manufacture of downhole pressure 

sensors and diesel engines. However, due to its small ratio of Young’s modulus to density, it is not ideal 

for manufacture of micromechanical resonators. The much lower Vickers hardness of Cd2SnO4 implies 

that it is not suitable for manufacture of MEMS micromotors and coating materials, which require super 

hard substrates. 
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