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Abstract

Ordinary Differential Equations (ODEs) of the Initial Value Problem
(IVP) or Boundary Value Problem (BVP) type can model phenomena
in wide range of fields including science, engineering, economics, social
science, biology, business, health care among others. Often, systems
described by differential equations are so complex that purely analytical
solutions of the equations are not tractable. Therefore techniques for
solving differential equations based on numerical approximations take
centre stage. In this paper we review the shooting method technique as
a method of solution to both linear and non-linear BVPs.
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1 Non Linear BVP of Ordinary Differential

Equations

1.1 Introduction

Virtually all systems that undergo change can be described by differential
equations. Differential equations model phenomena in wide range of fields in-
cluding science, engineering, economics, social science, biology, business, health
care among others. Often, systems described by differential equations are so
complex that purely analytical solutions of the equations are not tractable.
Therefore techniques for solving differential equations based on numerical ap-
proximations take centre stage.

1.2 Initial and Boundary Value Problems

A differential equation defines a relationship between unknown function and
one or more of its derivatives. The derivatives are of the dependent variable
with respect to independent variable(s). If the independent variable is single,
the differential equation is called an ordinary differential equation (ODE), oth-
erwise it is a partial differential equation (PDE). An Initial Value Problem of
an ODE usually abbreviated as IVP is an ordinary differential equation whose
solution is specified at only one given point in the domain of the equation. This
condition is often called an initial condition. An ordinary differential equation
whose solution in an interval domain say [a,b]where a, b ∈ R is specified at
more than one point is called a Boundary Value Problem (BVP). The condi-
tions are then called boundary conditions. Some specific examples of ODEs
are: in engineering, the dissolution of a contaminant into groundwater is gov-
erned by a first order ordinary differential equation. In science, the rate of
cooling of a beverage is proportional to the difference in temperature between
the beverage and the surrounding air. This is also governed by a first order
ODE.

An analytical solution of a differential equation (partial or ordinary) is
also called ‘closed form solution’. At best, there are only a few differential
equations that can be solved analytically in a closed form. There exist many
different methods in the literature for the analytical solutions of both IVPs and
BVPs[1]. These include methods for first order ordinary differential equations
such as linear equations solved by use of an integrating factor, exact equations,
homogeneous equations, ODEs in which variables are separable and Bernoulli
type equations. For second and higher order ODEs, techniques such as use
of complementary functions and particular integrals and variation of param-
eters method are available. There are only fairly few kinds of equations for
which the solution is in terms of standard elementary mathematical functions
such as cosine, sine logarithms, exponentials etc. Some simple second order
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linear differential equations can be solved using various special functions such
Legendre, Bessel’s etc. Beyond second order, the kinds of functions needed
to solve even fairly simple linear differential equations become extremely com-
plicated. Solutions of most practical problems involving differential equations
require the use of numerical methods. Numerical solution of IVPs of ODEs
are classified into two major groups namely, One-step methods and multi-step
methods. The one-step methods include among others, Taylor’s methods, Eu-
ler’s method, Heun’s method and Runge-Kutta methods. Linear multi-step
methods include, implicit Euler’s method, Trapezium rule method, Adams-
Bashforth method, Adams-Moulton method and predictor-corrector methods.
For BVPs of ODEs there exist some methods such as the shooting method and
finite difference method for both linear and non-linear BVPs. The shooting
method is the subject of this paper.

2 The Shooting Method

This method transforms a boundary value ordinary differential equation into
a system of first order equations solved as IVPs. The solution of the IVP
obtained is evaluated at the second boundary point and its value then is com-
pared with the actual boundary value given. An iterative approach is employed
to vary the assumed initial condition until the specified boundary conditions of
the solution are satisfied. As an illustration of the concept, consider a second
order BVP of ODE of the form

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y(b) = β (1)

We reduce this to a system of first order equations by letting

dy

dx
= z, y(a) = α (2)

dz

dx
= f(x, y, z), z(a) = y′(a) = si (3)

Equations (2) and (3) constitute a system of two initial value problems. The
si are real numbers. Notice that for each i, we are making a guess of the slope
of the solution at the first boundary x = a i.e. y′(a) which produces a solution
of the IVP. Since the solution of the IVP depends on the guessed value of si,
let y(x, si) be the solution of the IVP. We shall generate a sequence {si} such
that

lim
i→∞

y(x, si) = y(x) (4)

Now notice that the solution of the IVP at the second boundary point depends
on both b and s. Hence for any choice or guess of the slope value si, y(b, si)−β
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is the error made. Suppose s is the value of the slope which makes the error
zero, then

y(b, s)− β = 0 (5)

is the equation to solve which is a root finding problem. There are numer-
ical methods such the Bisection method, Secant method, Newton-Raphson
method, Fixed point methods, linear interpolation which can be used to find
roots of non linear equations of the form f(s) = 0[2]. Here we describe the
Secant method as shown in figure A below. Consider a function f(x) in the
form shown below
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Figure A: Derivation of the Secant method
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Take the initial guesses to the solution asx0 and x1. Draw a straight line(secant
line, tangent line) between f(x0) and f(x1) passing through the x− axis at x2.
EAC and DBC are similar triangles. Hence EA/CE=DB/CD or

f(x1)

x1 − x2
=

f(x0)

x0 − x2
on rearranging we find

x2 = x1 −
f(x1)(x1 − x0)
f(x1)− f(x0)

or

xi = xi−1 −
f(xi−1)(xi−1 − xi−2)
f(xi−1)− f(xi−2)

This will iteratively give you the solution of f(x) = 0. So for a given s0 and s1

si = si−1 −
f(si−1)(si−1 − si−2)
f(si−1)− f(si−2)

from which we can approximate the value of s that makes f(s) = 0. The
secant method to approximate the solution of y(b, s)− β = 0 will be

si = si−1 +
[si−2 − si−1]

y(b, si−2)− y(b, si−1)
[β − y(b, si−1)] (6)

Equation (6) provides you with an opportunity to make a mathematical guess
of the slope of the IVP. Note that we need two initial choices s0 and s1 to
compute s2 in order to continue the iteration. The beauty of the shooting
method is that it applies to both linear and non linear odes. For linear odes,
the accuracy is achieved in the first iteration in the Secant method. A few
iterations are needed for non linear odes. Let us consider an an example.

Example:

Consider the the non-linear BVP defined by the differential equation. We
solve using the shooting method.

d2y

dx2
+ sin(y) = cos(5x); −1 ≤ x ≤ 1, y(−1) = 0, y(1) = 0

Solution:

First, reduce the ODE to a system of first order equations by letting

dy

dx
= z = f(x, y, z), then

dz

dx
= cos(5x)− sin(y) = g(x, y, z)
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Hence the system of equations becomes

dy

dx
= z = f(x, y, z)

dz

dx
= cos(5x)− sin(y)

with y(−1) = 0 and z(−1) =?(Ω)(unknown). Here is the description of the
method. Guess the first slope call it dydx[1] and find the solution of the IVP.
Make a second guess of the slope call it dydx[2] and find the solution of the
IVP. The third guess of the slope is now obtained by some iterative protocol
in this case we use the secant method. The obtained slope is used to find
solution of he IVP. At this point we can now compare the obtained boundary
point and the actual boundary value. If the absolute error say between them
is greater than a given tolerance, we work out another slope dydx[4] and find
solution of IVP. This process goes on until tolerance is achieved. We can now
output the final solution of the IVP which is then the solution of the BVP.
The resulting IVP in each case is solved numerically using the fourth order
Runge-Kutta method. Here is a mathematica code for the method.
tol = .001;
f [x−, y−, z−] := z;
g[x−, y−, z−] := Cos[5*x] - Sin[y];
n = 8;(*number of time steps which you can vary*)
(*initialize the arrays x, y and z*)
x = Table[j, j, 0, n];
y = Table[j, j, 0, n];
z = Table[j, j, 0, n];
(*initial conditions*)
system[Ω−] := {xI = -1;x[[1]] = xI;zI = 0; y[[1]] = yI;zI = Ω−;z[[1]] = zI;yF =
0; xF = 1.0;step = (xF - xI)/n;h = N[step];(*step size*) For[i = 1, i< n + 1,
i++,
{ k1 = f[x[[i]], y[[i]], z[[i]]];
l1 = g[x[[i]], y[[i]], z[[i]]];
k2 = f[x[[i]] + h*.5, y[[i]] + k1*h*.5, z[[i]] + l1*h*.5];
l2 = g[x[[i]] + h*.5, y[[i]] + k1*h*.5, z[[i]] + l1*h*.5];
k3 = f[x[[i]] + h*.5, y[[i]] + k2*h*.5, z[[i]] + l2*h*.5];
l3 = g[x[[i]] + h*.5, y[[i]] + k2*h*.5, z[[i]] + l2*h*.5];
k4 = f[x[[i]] + h, y[[i]] + k3, z[[i]] + l3];
l4 = g[x[[i]] + h, y[[i]] + k3, z[[i]] + l3];
x[[i + 1]] = x[[i]] + h;
y[[i + 1]] = y[[i]] + (k1 + 2*k2 + 2*k3 + k4)*h/6;
z[[i + 1]] = z[[i]] + (l1 + 2*l2 + 2*l3 + l4)*h/6]};
(*incorporation of the shooting technique*) (*test and find where the root
lies*)
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Figure 1: The shooting method

W1 = 1; Ω1 = N[W1]; system[Ω1]; Z1 = y[[n + 1]] - yF; W2 = 2; Ω2 = N[W2];
system[Ω2]; Z2 = y[[n + 1]] - yF;W3 = 3; Ω3 = N[W3]; system[Ω3]; Z3 = y[[n
+ 1]] - yF;W4 = 4; Ω4 = N[W4]; system[Ω4]; Z4 = y[[n + 1]] - yF;yEnd =
W1, Z1, W2, Z2, W3, Z3, W4, Z4; ListLinePlot[yEnd];
(*apply the secant method*)
Q1 = 0; Ω1 = N[Q1]; system[Ω1]; R1 = y[[n + 1]]; Q2 = .5; Ω2 = N[Q2];
system[Ω2]; R2 = y[[n + 1]]; dydx[1] = Q1; dydx[2] = Q2;dydx[3] = dydx[2]
+ ((dydx[1] - dydx[2]))/(R1 - R2)*(yF - R2); Q3 = dydx[3]; Ω3 = N[Q3];
system[Ω3]; R3 = y[[n + 1]];
(*test for convergence*)
k = 3; R[2] = R2; R[3] = R3;
While[Abs[yF - R[k]]> tol, dydx[k + 1] = dydx[k] + ((dydx[k - 1] - dydx[k])/(R[k
- 1] - R[k]))*(yF - R[k]); Q[k + 1] = dydx[k + 1]; Ω = N[Q[k + 1]]; system[Ω];
R[k + 1] = y[[n + 1]]; k = k + 1]; Q[k] = dydx[k]; Ω= N[Q[k]]; system[Ω];
R[k] = y[[n + 1]];
k;(*number of iterations*)
dydx[k];(*required slope*) R[k];(*yEnd*)
y = Table[x[[j]], y[[j]], j, 1, n + 1];
z = Table[x[[j]], z[[j]], j, 1, n + 1];
plot1 = ListPlot[y, Frame→ True, Joined→ True, PlotStyle→Green, Thick,FrameLabel
→ Style[”x”, 12], Style[”y(x)”, 12]]
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