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ABSTRACT 

In the present day technological scenario, machines rotating at high speeds and 

carrying heavy rotor loads are used. As a result, fixed incline slider bearings are used. 

They are designed for high axial loads. When a bearing rotates at high speed, the heat 

generated due to large shearing rates in the lubricant film raises its temperature which 

lowers the viscosity of the lubricant and in turn affects the performance characteristics 

of the bearing. Hydrodynamic analysis should therefore be done to obtain the realistic 

performance characteristics of the bearing. In most of the analyses, two dimensional 

energy equation is used to find the temperature distribution in the fluid film by 

neglecting the temperature variation in the axial direction. In this research, two 

dimensional study was done to predict pressure distribution along a fixed incline 

slider bearing surface axially and across the film thickness. Two dimensional energy 

equation was also used to obtain the temperature distribution in the fluid film by 

considering the temperature distribution in the axial direction. It was found that the 

Pressure distribution increases with decreasing film thickness ratio i.e. as the film 

thickness ratio becomes smaller, the pressure profile increases without limits and that 

the normal load carrying capacity, the adiabatic temperature of a fixed incline slider 

bearing increases with decreasing film thickness ratio. Also, it was established that the 

film thickness ratio increases as the friction coefficient increases and that there will be 

a greater power loss in a fixed incline slider bearing when the film thickness ratio is 

small.  The results obtained here will be useful in designing and modifying fluid 

dynamic bearings. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information  

Machines consist of elements and their safe and efficient operation relies on carefully 

designed interfaces between these elements. The functional design of interfaces cover 

geometry; materials, lubrication and surface topography, and an incorrect design may 

lead to both lowered efficiency and shortened service life. A misalignment due to 

geometrical design could lead to large stress concentrations that in turn may lead to 

severe damage when mounting, a detrimental wear situation and rapid fatigue during 

operation. Large stress concentrations also implicitly imply a temperature rise because 

of the energy dissipation due to plastic deformations. This means that the choice of 

mating materials is also of great importance such as, electrolytic corrosion may 

drastically reduce service life. Contact fatigue due to low ductility would not only 

lower the service life but could lead to third body abrasion due to sparling, which in 

turn could end up lowering the service life of other components. A lubricant serves 

several crucial objectives; with its main objective being to lower friction, the actions 

of additives are of concern. If the interface is subjected to excessive wear, the 

lubricants ability to form a separating film becomes even more crucial. In this case, 

the bulk properties of the lubricant have to be carefully chosen. At some scale, 

regardless of the surface finish, all real surfaces are rough and their topography 

influences the contact condition. As implied above, these design parameters are 

mutually dependent i.e. they affect the way lubricants properties and geometry 

influence the operation of the system. For example, a change in geometry could 

require another choice of materials that may change the objectives of the lubricant and 

force the operation into another lubrication regime. All the four design parameters are 
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of great importance. However, in this research, focus will be on the lubricant 

properties such as pressure, temperature, viscosity and the geometry of the bearing 

and how it affects the performance characteristics of the bearing.  

 

1.2 Basic Concepts  

 

Whenever two bodies in contact are made to slide relative to one another, a resistance 

to the motion is experienced.  This resistance, called friction is present in all 

machinery. Approximately 30% of the power of an automobile engine is consumed by 

friction. Friction and wear can be significantly reduced and this relative motion of 

machine parts made possible, by interposing a substance at the interval of the 

contacting surfaces. Lubrication refers to the reduction of friction by interposing 

suitable material between the two surfaces in contact and in relative motion. The 

substance between the two surfaces is known as a lubricant. The interposed lubricant 

film can be a solid, solid/liquid dispersion, a liquid, liquid-liquid dispersion or gas. 

Mineral oils manufactured from petroleum are the most common liquid lubricants. 

The manufacturer of petroleum lubricants can choose from a wide variety of crude 

oils, and the choice is of great importance because the   lubricating oil fraction of 

crude oil varies widely. The machine elements designed to carry out lubrication are 

called bearings. The science and technology of interacting surfaces in relative motion 

is called tribology. 
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1.2.1 Heat Transfer in lubricants  

 

Friction in bearings causes an increase of the temperature inside the bearing. If the 

heat produced cannot be adequately removed from the bearing, the temperature might 

exceed a certain limit and as a result, the bearing would fail. Bearings are commonly 

used in mechanical systems when there are rotating parts in the systems. For bearings 

that run at high speeds above 1,000 revolutions per minute, such as those used in 

aircraft turbines, machining tools and automotive engines, it is important to take into 

account the heat transfer through bearing system due to friction. Heat transfer is 

generally not considered for applications where the bearing is rotating at low speeds 

such as clocks and bicycles. However, for certain aerospace applications, such as 

precision instruments or wind turbines, the heat transfer through the bearing becomes 

relevant.  

 

1.2.2 Viscosity  

 

Viscosity is a physical measurement of a fluids’ internal resistance to flow. Assume 

that a lubricating film is compressed between two flat plates creating a film between 

the plates. Force is required to make the plates move or overcome the fluids film 

friction. This force is known as dynamic viscosity. Dynamic viscosity is a 

measurement of lubricants internal friction. A common tool used to measure dynamic 

viscosity is the Brookfield viscometer. A more familiar viscosity term is Kinematic 

viscosity which takes into account the fluids density as a quotient of the fluids 

dynamic viscosity. The Kinematic viscosity is determined by using a capillary 
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viscometer in which a fixed volume of a fluid is passed through a small orifice at a 

controlled temperature under the influence of gravity. 

 

Various conditions must be considered when specifying the proper viscosity of a 

lubricant for a given application. These conditions include the operating temperature, 

the speed at which the specific part is moving and the load placed upon the part. One 

other consideration is whether or not the lubricant can be contained so that it remains 

present to lubricate the intended moving part. 

 

1.2.3 Temperature  

 

The viscosity of a lubricant changes with temperature. As temperature increases, the 

viscosity decreases. Conversely, as temperature decreases, the viscosity increases. To 

select a proper lubricant for a given application, the viscosity of a fluid must be high 

enough so as to provide adequate lubricating film, but not so high that friction within 

the lubricating film is excessive. Therefore when a piece of equipment must be started 

or operated at either temperature extreme, hot or cold, the proper viscosity must be 

considered.  

 

1.2.4 Speed  

 

The speed at which a piece of equipment operates must also be considered when 

specifying the proper lubricant viscosity. In high speed equipment, a high viscosity 

lubricant will not flow well in the contact zones and will channel out by fast moving 

elements of the equipment. On the other hand, low viscosity lubricant will have too 
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low viscosity to properly lubricate slow-moving equipment, because it would run 

right out of the contact zone. 

 

1.2.5 Load  

 

Equipment loads must also be considered when selecting the proper lubricant 

viscosity. Under a heavy load, the lubricant film is squeezed or compressed. 

Therefore a high viscosity lubricant is needed. The higher the viscosity, the more film 

strength the lubricant will generally possess. In addition, the load can be either a 

continuous or a shock load. A continuous load is a steady load that is maintained 

while the equipment is operational, while a shock load is a pounding or non-steady 

load. Under shock load conditions, a low viscosity lubricant would not possess 

enough film strengths to stay in place whereas a high viscosity lubricant could stay in 

place and act like a cushion in the contact area.  

  

1.3 Regimes of Lubrication  

 

When the load between the contact surfaces is progressively increased, three distinct 

situations may be observed with respect  to the mode of lubrication, which are called 

regimes of lubrication namely; 

1.3.1 Fluid Film Lubrication:  

This is the lubrication regime in which through viscous forces, the load is fully 

supported by the lubricant within the space or gap between the parts in motion relative 

to one another (the lubricated conjunction) and solid-solid contact is avoided. There 

are two special cases of fluid film lubrication namely; 
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1.3.1.1 Hydrostatic lubrication:  

This is a case of fluid-film lubrication in which an external pressure is applied to keep 

the lubricant in the conjunction, enabling it to support the external load. Figure 1.1 

below illustrates hydrostatic lubrication. 

 

 

 

Conventionally lubrication has been derived into 

 

i. Fluid  -film lubrication e.g hydrostatic lubrication, by 

hydrodynamic elasto hydrodynamic lubrication where the 

sliding surfaces are separated b a lubri 

ii. Boundary lubrication –where contact surface separating is but a 

few and asp 

  

 

 

Hydrostatic bearing 

 

                                   Figure 1.1: Hydrostatic Lubrication (Source; Author, 2015) 
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1.3.1.2 Hydrodynamic/Hydraulic lubrication:   

This is a case of fluid-film lubrication which occurs when the lubricant is able to 

support the load without external pressure through hydrodynamic forces alone, which 

deform the shape of the interposing lubricant film into a wedge shape and drags the 

lubricant into the film so that the externally applied load can be supported. Figure 1.2 

below illustrates hydrodynamic lubrication.  

 

1.3.2 Elasto-hydrodynamic lubrication/mixed lubrication  

The opposing surfaces are separated but there occurs some interaction between the 

raised solid features called asperities and there is an elastic deformation on the 

contacting surfaces enlarging the load bearing area where by the viscous resistance of 

the lubricant becomes capable of supporting the load. 

 

 

       Velocity                             

Lubricant 

                Pressure   

  Figure 1.2: Hydrodynamic lubrication (Source; Author, 2015) 

 

      h 

  Pad 

Slider 
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1.3.3  Boundary lubrication   

 Here, the surfaces come into closer contact at their asperities (raised solid features).  

The heat developed by the local pressures causes a condition which is called stick-slip 

and some asperities break-off. At the elevated temperature and pressure conditions, 

chemically reactive constituents of the lubricant react with the contact surface 

forming a highly resistant tenatious layer, or film on the moving solid 

surfaces(boundary film) which is capable of supporting the load and major wear or 

breakdown is avoided. Boundary lubrication is also defined as that regime in which 

the load is carried by the surface asperities rather than by the lubricant. The 

lubrication regimes discussed above can be represented on a stribeck curve as shown 

in figure 1.3 below; 

 

Figure 1.3: Stribeck curve (Source; www.subtech.com, 2015) 

The three lubrication regimes are clearly distinguished in the Stribeck curve in figure 

1.3 above, which demonstrates the relationship between the coefficient of friction and 

Bearing Parameter ηN/pav 

 

http://www.substech.com/dokuwiki/lib/exe/detail.php?id=lubrication_regimes&cache=cache&media=lubrication_regimes.png&DokuWiki=b2d39ea974a2393425cff20d42474622
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the bearing parameter ηN/pav. Stability of different lubrication regimes may be 

explained by means of the Stribeck curve. Temperature increase due to heat generated 

by friction causes drop of the lubricant viscosity and the bearing parameter. 

According to the Stribeck curve decrease of the bearing parameter in mixed regime 

causes increase of the coefficient of friction followed by further temperature rise and 

consequent increase of the coefficient of friction. Thus mixed lubrication is unstable. 

Increase of the bearing parameter due to temperature rise (lower viscosity) in 

hydrodynamic regime of lubrication causes the coefficient of friction to drop with 

consequent decrease of the temperature. The system corrects itself. Thus 

hydrodynamic lubrication is stable 

1.4 Types of bearings 

Bearings are machine elements designed to carry out lubrication. There are various 

types of bearings. A thrust bearing is a particular type of rotary rolling-element 

bearing. Like other bearings they permit rotation between parts, but they are designed 

to support a predominately axial load. Thrust bearings come in several varieties 

namely; Thrust ball bearings, cylindrical thrust roller bearings, tapered roller thrust 

bearings, spherical roller thrust bearings, fluid bearings and magnetic bearings. Thrust 

ball bearings, composed of ball bearings supported in a ring, can be used in low thrust 

applications where there is little axial load. Cylindrical thrust roller bearings consist 

of small cylindrical rollers arranged flat with their axes pointing to the axis of the 

bearing. They give very good carrying capacity and are cheap, but tend to wear due to 

the differences in radial speed and friction which is higher than with ball bearings. 

Tapered roller thrust bearings consist of small tapered rollers arranged so that their 

axes all converge at a point on the axis of the bearing. The length of the roller and the 

http://en.wikipedia.org/wiki/Rolling-element_bearing
http://en.wikipedia.org/wiki/Rolling-element_bearing
http://en.wikipedia.org/wiki/Axis_of_rotation
http://en.wikipedia.org/wiki/Ball_bearing
http://en.wiktionary.org/wiki/axial
http://en.wikipedia.org/wiki/Tapered_roller_bearing


10 

 

diameter of the wide and the narrow ends and the angle of rollers need to be carefully 

calculated to provide the correct taper so that each end of the roller rolls smoothly on 

the bearing face without skidding. These are the type most commonly used in 

automotive applications (to support the wheels of a motor car for example), where 

they are used in pairs to accommodate axial thrust in either direction, as well as radial 

loads. They can support rather larger thrust loads than the ball type due to the larger 

contact area, but are more expensive to manufacture. Spherical roller thrust bearings 

use asymmetrical rollers of spherical shape, rolling inside a house washer with a 

raceway with spherical inner shape. They can accommodate combined radial and 

axial loads and also accommodate misalignment of the shafts. They are often used 

together with radial spherical roller bearings. Fluid bearings where the axial thrust is 

supported on a thin layer of pressurized liquid give low drag Magnetic bearings where 

the axial thrust is supported on a magnetic field They are used where very high speeds 

or very low drag are needed. Thrust bearings are commonly used in automotive, 

marine, and aerospace applications. They are also used in the main and tail rotor blade 

grips of RC (radio controlled) helicopters. Thrust bearings are used in cars because 

the forward gears in modern car gearboxes use helical gears which, while aiding in 

smoothness and noise reduction, cause axial forces that need to be dealt with. The 

double helical or herringbone gear balances the thrust caused by normal helical gears. 

One specific thrust bearing in an automobile is the clutch "throw out" bearing, 

sometimes called the clutch release bearing. Fluid-film thrust bearings were invented 

by Australian engineer George Michell who patented his invention in 1905. Michell 

bearings contain a number of sector-shaped pads, arranged in a circle around the 

shaft, and which are free to pivot. These create wedge-shaped regions of oil inside the 

bearing between the pads and a rotating disk, which support the applied thrust and 

http://en.wikipedia.org/wiki/Spherical_roller_thrust_bearing
http://en.wikipedia.org/wiki/Spherical_roller_bearing
http://en.wikipedia.org/wiki/Fluid_bearing
http://en.wikipedia.org/wiki/Magnetic_bearing
http://en.wikipedia.org/wiki/Gearbox
http://en.wikipedia.org/wiki/Helical_gear
http://en.wikipedia.org/wiki/Herringbone_gear
http://en.wikipedia.org/wiki/Clutch
http://en.wikipedia.org/wiki/Anthony_Michell
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eliminate metal-on-metal contact. Michell's invention was notably applied to the 

thrust block in ships. The small size (one-tenth the size of old bearing designs), low 

friction and long life of Michell's invention made possible the development of more 

powerful engines and propellers. They were used extensively in ships built during 

World War I, and have become the standard bearing used on turbine shafts in ships 

and power plants worldwide.  

1.5 Statement of the problem 

  

The performance characteristics of a fixed incline slider bearing have not been 

investigated. The variation of pressure and temperature have not been studied. The 

friction coefficient and the power loss of  a fixed incline slider bearing have also not 

be determined. The above mentioned is what this research attempts to address. 

 

1.6 Broad objectives of the study  

 

The general objective of the study was to analyze the variation of temperature, 

pressure and viscosity and geometry of the bearing on the performance of a fixed 

incline slider bearing.  

 

1.7 Specific objectives of the study 

The specific objectives of the study are; 

1. To develop a mathematical model for a fixed inclined slider bearing 

2. To determine the velocity profiles, pressure profiles and temperature profiles, 

3. To determine the axial load (Normal load), 

http://en.wikipedia.org/wiki/Thrust_block
http://en.wikipedia.org/wiki/World_War_I
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4. To determine friction coefficient and the power loss of a fixed incline slider 

bearing 

1.8 Significance of the study  

 

Rotating machinery is commonly used in our society for a wide range of energy 

conversions applications such as automobiles, electric power generation, cooling and 

ventilation. These are areas in mechanical engineering. Therefore, understanding the 

factors affecting the ability of a lube to lubricate surfaces in relative motion and how 

they correlate is important to the engineer. To improve the efficiency of a bearing, one 

may either alter the lubricant properties or alter the geometry of the bearing. 

Understanding the axial variation of pressure, temperature, viscosity, load and 

geometry of the bearing will be useful in the design of hydrodynamic bearings and in 

predicting the bearing performance. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Related Literature Review 

A number of models of hydrodynamic bearings performance have been proposed over 

the years. Chang (2004) studied load capacity for adiabatic infinitely wide plane slider 

bearing in the turbulent thermo-hydrodynamic regime. They developed a two 

dimensional Navier-Stokes based model. Using Legendre collocation method, to 

analyse turbulent plane slider bearings with wide ranges of bearing configurations, 

mean Reynolds number and a parameter characterizing the viscosity variation. The 

load capacity formulation were established for turbulent isothermal and turbulent 

thermo-hydrodynamic bearings. With the equations provided in the study, the 

designers can quickly determine the load capacity without extensive.  

 

Andrei and Traian (2005) analyzed theoretically the load carrying capacity of a 

typical thrust bearing with elastic pad in order to define optimal pad parameters using 

thrust bearing analysis software based on finite difference solution of flow and 

thermal equations and finite element solution for solid structure equations. The results 

represented for equivalent slider revealed that the load carrying capacity of such a 

bearing is comparable with a similar tilting-pad bearing. Zengeyu, Gadala and 

Segal(2006) studied a three dimensional modelling of thermo-hydrodynamic 

lubrication in slider bearings using streamline upwind petrovGalerkin method. The 

model couples the Reynolds and energy equations and was developed using the finite 
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element program. The model results indicate that the pick temperature is not on the 

mid-plane surface. This position shifting towards the mid-plane as the width to length 

ratio is reduced from 10 to 1 as well as when pressure boundary conditions are altered 

in such a way that the inlet/outlet pressure is higher than the side pressure. The 

adiabatic temperature profiles on infinite slider and square slider are compared. Model 

results show peak slide flow at a width-to-length ratio of 2. 

 Latif et.al. (2009)Studied thermo hydrodynamic performance of thrust bearings with 

circular tilted pads under the presence of air gas bubbles and centrifugal forces. He 

showed viscosity and density are altered substantially due to bubble presence as well 

as temperature rise and the influence of the centrifugal forces become significant as 

the speed become higher. They varied the geometry and loading parameters to show 

the combined effect on the bearing characteristic values. . Glavatskih (2009) wrote a 

paper on 3D thermo-hydrodynamic analysis of a textured slider with a temperature 

dependent fluid. Numerical solutions were carried out for a laminar and steady flow. 

Hot and cold lubricant mixing in the groove was modelled and examined for different 

operating conditions. The results obtained show that the texture has a stronger and 

positive influence on load carrying capacity when thermal effects are considered. This 

beneficial effect is a maximum for the longest dimples with a length shorter than the 

pad length. Texture is also beneficial for the load carrying capacity when the sliding 

speed and the inlet flow rate are varied. The load carrying capacity of the slider can be 

increased up to 16% in severe operating conditions (High sliding speed).  

 Kyung et. al. (2009) studied a three dimensional analysis of thermo-hydrodynamic 

performance of sector shaped, tilting pad thrust bearings. They studied the effect of 

pivot pistons and operating and environmental conditions on the bearing performance. 

They compared the analysis with iso-viscous or the two dimensional analysis and they 
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found it to predict the bearing performance. Maneshian (2009) studied thermo-

hydrodynamic analysis of turbulent flow in journal bearings and presented their 

results based on the computational fluid dynamics techniques. In this analysis the 

numerical solution of the Navier-Stokes equation with the equation governing the 

kinetic energy of turbulence and the dissipation rate coupled with the energy equation 

in the lubricant flow and the heat conduction equation in the bearing are obtained. 

Considering the complexity of the physical geometry, conformal mapping is used to 

generate an orthogonal grid and the governing equations are transformed to 

computational domain. From these method, the lubricant velocity, pressure and 

temperature distributions in the circumferential and cross film directions are obtained 

without any approximation. The numerical results are compared with the 

experimental data and good agreement is found.  

Chang et. al (2009) studied thermos-hydrodynamic lubrication analysis of misaligned 

plain journal bearing with surface roughness. They calculated the oil film pressure, oil 

film temperature, load carrying capacity and leakage flow rate, frictional coefficient 

and misalignment moment of a journal bearing with different angles of journal 

misalignment and surface roughness and considering oil VPR and thermal effect 

based on the generalized Reynolds equation, Energy equation and solid heat 

conduction equation. The result showed that the oil VPR and surface roughness have 

a significant effect on lubrication of misaligned journal bearings under large 

eccentricity ratio. Thus it is necessary to take the effect of journal misalignment, 

surface roughness, oil VPR and thermal effect into account in the design and analysis 

of journal bearings. 
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  Boubendir et. al. (2011) did a research on the numerical study of the thermo-

hydrodynamic lubrication phenomenon in porous journal bearings. In this study, a 

numerical simulation is presented for the thermo-hydrodynamic self-lubrication 

aspect analysis of porous circular journal bearing of finite length with seal ends. It 

consisted in analyzing the thermal effects on the behaviour of circular porous journal 

bearings. The Reynolds equation of this viscous films was used taking into account 

the oil leakage into the porous matrix by applying Darcy’s law to determine the fluid 

flow in the porous media. The results showed that the temperature influence on 

journal bearings performance is important in some operating cases and that a 

progressive reduction in the pressure distribution in the load capacity and latitude 

angle is a consequence of the increasing permeability. 

 Marius (2012) researched on the influence of lubricant temperature on the 

functioning of hydrostatic guidance systems of machine tools. He made a functional 

simulation pattern of hydrostatic charging system which analyses the behavior of the 

lubricant under high temperature when it passes through a restrictor. Kiogora et. al. 

(2014) Developed a conservative scheme model of an inclined pad thrust bearing. 

They also obtained a numerical solution of the momentum and energy equations of an 

inclined pad thrust bearing. Banwait et. al. (2014) studied thermo-hydrodynamic 

analysis to investigate the influence of modified viscosity-temperature equation on a 

plain journal bearing. They used finite difference method to predict temperature 

distribution in a journal bearing. They found the temperature distribution along the 

axial direction of the journal using a steady state unidirectional heat conduction 

equation.  

Charitupoulous et. al. (2014) did a computational investigation of thermo-

hydrodynamic performance and mechanical deformations of fixed geometry thrust 
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bearing with artificial surface texting. Although a lot of research has been done in the 

last two decades, hydrodynamic analysis of an fixed  incline slider bearing to 

determine its performance by considering axial variation of pressure, viscosity and 

temperature, load and the geometry of the bearing has not been researched on and this 

is what this research strived to explore. 
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CHAPTER THREE 

METHODOLOGY 

 

3.1  Assumptions and approximations  

In the mathematical analysis, the lubricant to be used in a fixed incline slider bearing, 

the following assumptions were made; 

i. Inertia and body force terms are negligible as compared to viscous and 

pressure forces 

ii. The lubricant is incompressible 

iii. There is no variation of pressure across the fluid film 

iv. There is no slip in the fluid solid boundary 

v. No external forces act on the film 

vi. The fluid flow is assumed to be laminar 

 

3.2 Governing Equations 

 

Consider the flow of a Newtonian viscous incompressible fluid(lubricant) of constant 

density   and coefficient of viscosity  with velocity vector q having velocity 

components u, v, w and pressure p. The basic governing equations of fluid dynamics 

based on the assumptions above are; 

 

3.2.1 Conservation of mass (Continuity Equation) 
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In three dimensions, the equation of continuity is; 
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If the density is constant, i.e. 0
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t


, the equation becomes; 
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which is the equation of continuity for an incompressible fluid. 

 

3.2.2 Conservation of momentum 

 

This is derived from Newton’s second law of motion which states that the sum of 

resultant forces is equal to rate of change of momentum of the flow. The momentum 

equation in is written as; 

  Fqq
q








.

11
. p

t
                                                  (3.3) 

 

3.2.3 Reynolds Equation 

 

The general Navier-Stokes equation in which inertia, body, pressure and viscous 

terms are included are sufficiently complicated to yield analytical solutions to most 

practical problems. There is however a class of flow condition known as “slow 

viscous motion” in which the pressure and viscous terms predominate. Fluid film 

lubrication problems fall into this category. The differential equations governing the 

pressure distribution of fluid film lubrication is known as the Reynolds equation. It 

was first derived by Osborne Reynolds (1886) . Reynolds restricted his analysis to 
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incompressible fluids. The Reynolds equation from the Navier- Stokes equation and 

the continuity equations can now be derived based on assumptions in 3.1. 

Consider a fluid film of height h as shown below; 

 

z 

 

 

       u    

         x                                                                                      

y 

                                                                                                   h 

           

  

           

            

 Figure: 3.1 Fluid depicting the shear (Source; Author, 2015) 

Assuming that there is no variation of pressure across the fluid film, inertial and body 

force terms are negligible as compared to viscous and pressure forces, there is no slip 

in the fluid solid boundary and that the derivation of u and w with respect to y are 

much larger than derivation of velocity components, the Navier - Stokes equation 

(3.3) reduces to; 
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Where  is the viscosity. Since p is a function of x and y only, the above equations 

can be integrated to obtain the generalized expressions for the velocity gradients; 
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                            Dividing through by  gives; 
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Where A and C are integration constants. The viscosity of the lubricant may change 

considerably across the thin film (z direction) as a result of the temperature variations 

that arise in some bearing problem. For this case, we will treat  as the average value 

of viscosity across the film. This consideration will not restrict the variation of 

viscosity in the x and y directions. Therefore with   representing the average value 

of the viscosity across the film. Integrating the above equations gives; 
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                      (3.6) 

If zero slip at the fluid solid surface is assumed, the boundary values for velocity are; 

1. z=0, u=ub, v=vb 

2. z=h, u=ua, v=va                              (3.7) 

     wa 

 

       z                                                                               ua 

  x                           va  

 y                              ub 
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                                          vb                       wb 

 Figure: 3.2 Fluid depicting velocity components( Source; Author, 2015) 

The subscripts a and b refer to the conditions on the upper (curved) and lower (plane) 

surfaces respectively. Therefore ua , va  and wa refer to the velocity components of the 

upper surface in the x,y and z directions respectively and ub, vb and wb refer to the 

velocity components of the lower surface in the same directions. Applying the 

boundary conditions (3.7) to the equations above   yields; 

h

uu

x

phz

z

u ba 










 






2

2
               (3.8a) 

h

vv

y

phz

z

v ba 










 






2

2
                          (3.8b) 

h

z
u

h

zh
u

x

pzh
zu ab 














 


2
              (3.9b) 

h

z
v

h

zh
v

y

pzh
zv ab 














 


2
                        (3.9b) 

 The viscous shear stresses acting on a solid can be expressed as; 
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In the order of magnitude evaluation, 
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and the viscous shear stress acting on the upper and lower solid surfaces can be 

expressed while making use of equations 3.8 as; 
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The volume flow rate per unit width in the x and y directions are defined as; 
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Substituting equations  3.9 in these equations gives; 
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Returning to equations 3.9 the Reynolds equation is formed by introduction these 

expressions into the continuity equation 3.1  

Let as first express the continuity equation in integral form; 
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Now from integration rules; 
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 If ρ is the mean density, across the film, the u component term in the integrated 

equation is; 
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Similarly for the v component; 
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The w component term can be integrated directly to give; 
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Therefore the integrated continuity equation becomes; 
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The integrals in this equation represents the volume flow rates per unit width 
'

xq and 

'

yq described in equations 3.14 above. Introducing the flow rates expressions into the 

continuity equation yields the general Reynolds equation; 
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3.2.4 Reduced form of Reynolds equation 

If the fluid motion is purely tangential, where 
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general Reynolds equation (3.21) becomes; 
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Where; 
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For hydrodynamic lubrication, the fluid property do not vary significantly throughout 

the bearing and this may be considered to be constant. Also, for hydrodynamic 

lubrication, the motion is purely sliding so that the velocity is zero. Thus the 

corresponding Reynolds equation is; 
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Equation 3.22 above does not only allow the fluid properties to vary in the x and y 

directions, but also permits the bearing surface to be of finite length in the y direction. 

Side leakage or flow in the y direction is associated with the second and third 

equations in 3.22 and 3.23 

Neglecting side leakages; 
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This equation can be integrated with respect to x to give; 
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Making use of the boundary conditions; 
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0
dx

dp
 when mmm hhxx  ,,   gives; 

A= -12 mmhu  

Substituting this into equation 3.25a gives; 
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This is the integrated form of the Reynolds equation. The subscript refers to the 

condition at all points where 0
dx

dp
, such as the point of maximum pressure. If the 

density does not vary much throughout the conjunction, it can be considered to be 

constant so that; 
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3.3 Dimensional analysis 

 

Dimensional analysis is very useful for planning, presentation and interpretation of 

experimental data. Most practical fluid mechanic problems are too complex to solve 

analytically and must be tested by experiment or approximated by computational fluid 

dynamics. These data have much more generality if they are expressed in compact 

economical non-dimensional form. Dimensional analysis is a method for reducing the 

number of complexity of experimental variables that affect a given physical 

phenomena.The non-dimensional numbers numbers in hydrodynamics applicable to 

this study can now be defined; 
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3.3.1 Reynolds number 

This is denoted by Re and is defined as the ratio of inertia forces 
2

0U
 to viscous 

forces 
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3.3.2 Prandtl Number  


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r

c
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In heat transfer involving convection warm and cool particles mix and because of 

their temperature difference, local heat conduction occurs. This mixing also involves 

momentum transfers. Prandtl’s Number is a measure of the relative ability of the fluid 

to allow momentum diffusion and thermal diffusion.  

 

3.3.3 Stribeck number  

The stribeck number is defined as 0
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u
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and is used to categorize the friction 

properties between two surfaces. These categories are; boundary lubrication mixed 

lubrication and hydrodynamic lubrication. In this research, the Stribeck number will 

be chosen for hydrodynamic lubrication. In addition, the ratio 0

0

H

r

 is chosen to be 

equal to 
310

. This is the standard quantity for a typical thrust bearing pad. 
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3.3.4 Pressure coefficient 

This is also referred to as the Euler’s number. It is defined as 
2
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p
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 . It gives the 

importance of pressure term relative to inertia term.  

 

3.4 Force components and oil film geometry 
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Figure 3.1: Force components and oil film geometry in a hydrodynamically 

lubricated thrust sector. (Source; Author, 2015) 

The forces acting on the solids can be considered in two groups. The loads, which act 

in the direction normal to the surface, yield normal loads that can be resolved into 

components wx
’
 and wz

’
. The viscous surface stresses, which act in the direction 

tangent to the surface, yield shear forces on the solids that have components f
’
 in the x 

direction. The component of the shear forces in the z direction is negligible. Once the 
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pressure is obtained for a particular film configuration from the Reynolds equation, 

the following force components act on the solids: 



l

zbza pdxww
0

''                                         (4.1) 

0' xbw                                            (4.2) 

dx
dx

dh
ppdhw

lh

shh
xa  

 0

' 0

0

 

  dx
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hdx
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hphw
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l

xa  
00

0

'                                     (4.3) 

  '2

1
2'2''

zbxbzbb wwww                                         (4.4) 

 2
1

2'2''

xazaa www                                          (4.5) 

'

'

1tan
za

xa

w

w                                          (4.6) 

Shear forces per unit width acting on the solids are; 

  dxf
z

l

zxb

00

'



   

From equation (3.12), 
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
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
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0
 

Therefore substituting this in the equation above gives; 

dx
h

u

dx

dph
f

l

b

b  












0

'

2
  

Making use of equation (4.3) yields; 

dx
h

uw
f

l

bxa
b 

0

'

'

2


                              (4.7)   
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Similarly the shear force per unit width acting on the solid a is; 

  dx
h

uw
dxf

l

bxa

hz

l

zxa  




 0

'

0

'

2


                            (4.8) 

Note from figure 4.1.1 that; 

0'''  xaab wff                              (4.9) 

0''  zazb ww                             (4.10) 

These equations represent the condition of static equilibrium. The viscous stresses 

generated by the shearing of the lubricant film give rise to a resisting force of 

magnitude –fb on the moving surface. The rate of working against the viscous stresses, 

or power loss is 

bibbbp urrfufh )( 0

'                      (4.11) 

The work done against the viscous stresses appears as heat within the lubricant. Some 

of this heat may be transferred to the surroundings by radiation or by conduction, or it 

may be convected from the clearance space by the lubricant flow. The bulk 

temperature rise of the lubricant for the case in which all the heat is carried away by 

convection is known as the "adiabatic temperature rise." This bulk temperature 

increase can be calculated by equating the rate of heat generated within the lubricant 

to the rate of heat transferred by convection: 

)( mpp tqCh    

Or the adiabatic temperature rise in degrees Celsius may be expressed as; 

p

m
qC

hp
t


                       (4.12) 

Where ρ=density of the lubricant, kg/m
3
 

 q=Volume flow rate in the direction of motion, m
3
/s 



31 

 

 Cp=Specific heat of material at constant pressure, J/kg
0
C 

The equations above can now be used to analyze a fixed inclined slider bearing. In the 

analysis, we will make use of non-dimensiolization to define the resulting 

performance parameters of the bearing. It will be assumed that the pressure generating 

mechanism is the physical wedge. 

 

4.2  Fixed incline slider bearing  

 

 

 

 

 

     Sh 

 

                                                                        

                                                               h0 

          z  

 

             bu  

Figure 4.2: Fixed incline slider bearing (Source; Author, 2015) 

The figure 3.21 above shows a fixed incline slider bearing. A fixed incline slider 

bearing consists of two non-parallel plane surfaces separated by an oil film. One 

surface is stationary while the other moves with a uniform velocity. The direction of 

motion and the inclination of planes are such that a converging oil film is formed 

l 
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between the surfaces and the physical wedge pressure-generating mechanism is 

developed in the oil film; it is this pressure-generating mechanism that makes the 

bearing able to support a load. 

 

4.2.1  Pressure distribution 

 

For hydro dynamic lubrication, the Reynolds equation is given by; 

x

h
u
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p
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p
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x 


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
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












1233

             (4.13) 

Neglecting side leakages, equation (4.13) becomes; 

 
x

h
u

x

p

h

h

x 


















 



12

3

                          (4.14) 

Integrating this equation with respect to x gives; 

32

121

h

A

h

u

dx

dp


                            (4.15) 

Making use of the boundary conditions that; 

0
dx

dp
 when mxx   m   mhh   gives; 

mmhuA 12  

Substituting this into equation (4.15) gives; 

3
12

h

hh
u

dx

dp mm







                           (4.16) 

This is the integrated form of the Reynolds equation. The subscript m refers to the 

condition at all points where 0
dx

dp
such as the point of maximum pressure. 

If the density does not vary much throughout the conjunction, then it can be 

considered constant and equation 4.16 reduces to; 
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3
12

h

hh
u

dx

dp m
                       (4.17) 

We will begin the analysis of an inclined slider bearing with the integrated form of 

Reynolds equation (4.17) above. Keeping in mind that 
2

ba uu
u


  If we let ua=0, 

and assuming a constant viscosity 0 , Equation (4.17) becomes; 

306
h

hh
u

dx

dp m

b


                              (4.18) 

Where hm  is the film thickness when 0
dx

dp
The oil film thickness can be written as 

a function of x; 











l

x
shh h 10                      (4.19) 

Expressing the film thickness and pressure in dimensionless terms yields; 

lu

ps
P

b

h

0

2


 , H=

hs

h
, 

h

m

m
s

h
H  , 

hs

h
H 0

0   and 
l

x
X                  (4.20) 

Incorporating this in equation (4.18) and  (4.19) gives, 








 


3
6

H

HH

dx

dP m                      (4.21) 

XH
s

h
H

h

 10                     (4.22) 

1
dX

dH
                      (4.23) 

Integrating equation (4.21) gives; 

dX
H

H

H
P m

 









32

1
6  

Making use of equation (4.23) , gives; 
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dH
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A
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H
P m 










22

1
6                     (4.24) 

The boundary conditions are; 

1. P=0 when X=0→ H=H0+1 

2. P=0 when X=1→H=H0 

Making use of boundary conditions 1 and 2 we get; 

Hm=
0

00

21

)1(2

H

HH




                     (4.25) 

and 
021

6

H
A


                       (4.26) 

Substituting equations (4.25) and (4.26) into (4.24) gives; 

   0

2

0 211

)1(6

HXH

XX
P




                     (4.27) 

Next, we determine the maximum pressure for the incline slider bearing, as we saw 

earlier, the pressure is maximum, (i.e. 0
dx

dp
), mm HHXX  , , Therefore 

substituting this in (4.22), gives; 

mm XHH  10          

  

Rearranging;  

0

0

21

1

H

H
X m




                      (4.28) 

Substituting this in equation (4.27), yields; 

)21)(1(2

3

000 HHH
Pm
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                            (4.29) 
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In dimensionless terms, equation (4.29) becomes 

)2)((2

3

000

0

hshsh

lsu
p

hh
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m





                    (4.30) 

  

4.2.2 Normal load component 

 

The normal load per unit width can be written as; 


l

z pdxw
0

'
 

The equation can be written in dimensionless form by making use of relations (4.20) 
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Because 1
dX

dH
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

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0

0 1

H

H

z PdHW           (4.31) 

Substituting equations (4.24) to (4.26) into this (4.31) gives; 
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H
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

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 
                     (4.32) 

These results are based on the knowledge of the assumptions that side leakage was 

neglected and smooth surfaces and isothermal conditions were assumed. 

 

4.2.3 Tangential Force Components 

 

The force per unit width in the direction of motion due to pressure being developed is; 



36 

 








0

0

'

' 0

h

sh

xa

xb

h

pdhw

w

 

Making use of equation (4.20), the preceding equation may be expressed in 

dimensional form as 
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4.2.4  Shear Force Components 

 

The shear force components per unit width acting on the solids are; 
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The viscous shear stresses are defined as; 

                                 (4.35)  

                                                                

 

 

Substituting equations (4.35) into (4.34) while letting ua=0 we have; 
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Expressing (4.15) in dimensionless form using equations (4.20) yields; 
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By making use of equations (4.20), the preceding equations can be expressed as; 
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4.2.5 Friction coefficient 

 

The friction coefficient can be expressed as; 
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Making use of equations (4.21) and (4.22) gives; 
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4.2.6 Volume flow rate 

 

The volume flow rate per unit width can be expressed as, 
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Evaluating the flow rate where 0
dx

dp
 and setting ua=0 gives the volume rate as; 

2

mb

x

hu
q                              (4.41) 

The dimensionless volume flow rate can be expressed as; 
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4.2.7 Power Loss and Temperature Rise 

 

The total rate of working against the viscous stresses, or the power loss, can be 

expressed from (4.11) as, 

  bibbbp urrfufh  0

'
 

Expressed in dimensionless form,  

                                                                              

 

                                          (4.43)                                                               

 

All the heat produced by viscous shearing is assumed to be carried away by the 

lubricant(adiabatic condition)  The bulk temperature increase can be calculated by 

equating the rate of heat generated within the lubricant to the rate of heat transferred 

by convection. Therefore from equation (4.12), the lubricant temperature rise is; 
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Where; 

0  = The constant lubricant density, Kg/m
3
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'

xq = The volume flow rate per unit width in sliding direction, m
2
/s 

Cp=specific heat of constant pressure J/kgC 

The dimensionless temperature rise may be expressed as; 
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4.2.8 Centre of Pressure 

 

The location of the center of pressure xcp indicates the position at which the resulting 

force is acting. The expression for calculating the location is given by; 
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Therefore the dimensionless center of pressure can be written as 



1

0

1
PXdX

wl

x
X

z

cp

cp                     (4.46) 

Substituting equation (4.22) to (4.24) into (4.46) gives; 
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4.2.9  Velocity Profile and Stream Function 

 

For a stationary top surface, (ua=0), the fluid velocity can be written as; 

h
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Using equations (4.22), this equation can be expressed in the dimensionless form as; 
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Where 
hs

z
Z   and 0≤Z≤H                      

(4.50) 

From equation (4.49), 0
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u
 when; 

1. HZcr   or at the top surface 
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Note that condition 2 can only exist when 0
dX

dP
and thus when X<Xm 

Substituting equation (4.21) into equation (4.51) while making sure that the inequality 

in equation (4.50) is satisfied gives; 

0≤2H-3Hm                      (4.52) 

Making use of equations (4.22) and (4.25) gives 
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The inequality is only satisfied if H0≤1. This then implies that reverse flow exists 

when; 
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If these inequality is satisfied, then; 

0
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 and mXX   

Substituting equation (4.21) into equation (4.49) gives; 
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Thus, 
bu

u
is just a function of X, Z and H0.A streamline is a curve tangent to which 

gives the fluid velocity vector. Surface boundaries are streamlines since the fluid 

cannot cross the surface boundary. The definition of streamline may be given 

mathematically while neglecting the side leakage term as; 
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                       (4.57) 

The continuity equation for an incompressible fluid is given by; 

0














z

w

y

v

x

u
 

This equation can be satisfied while neglecting the side leakage term by introducing a 

new function defined by; 
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Where ϕ is a function of x and z and is called the stream function. By using the chain 

rule of partial differentiation, the total derivative of ϕ can be expressed as; 
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Making use of equation (4.58), gives; 
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Setting dϕ=0, the definition of a streamline given in equation (4.57) is obtained. 

Equation (4.58) can also be expressed in dimensionless terms of a stream function ϕ 

as ; 
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Substituting equation (4.55) into equation and integrating gives;  
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Also from the continuity equation and neglecting the side leakage term, the velocity in 

the Z direction can be written as; 
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Substituting equation (4.55) into this equation gives 
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Note from this equation that          
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Note that 0≤Xcr≤1 when H0≤1 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

From equation (4.27) dimensionless pressure, P is a function of X and H0.  

Table 4.1: The variation of P with X for various values of H0  

 

         X 0 0.2 0.4 0.6 0.8 1.0 

0H =2, 

P 

0 0.0244 0.0426 0.05 0.0396 0 

0H =1, 

P 

0 0.0987 0.1875 0.244 0.222 0 

0H =
2

1

,P 

0 0.2840 0.5950 0.888 0.979 0 

0H =
4

1

,P 

0 0.580 1.328 2.272 3.160 0 

 

From equation 4.32, 
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Table 4.2: The table of values for Wz and H 0  

 

Dimensionless 

Normal load 

carrying 

capacity, Wz 

∞ 0.591 0.129 0.064 0.032 

Film thickness 

ratio, H0 

0 0.5 1 1.5 2 

 

Table 4.3: The table of values for dimensionless force components Wxa, Fb and Fa  

 

Film 

thicknesss 

ratio H0 

0.2 0.4 0.6 0.8 1.0 1.2 

Wxa=Wz 
2.179 0.849 0.430 0.250 0.158 0.107 

Fb 
-2.881 -1.677 -1.196 -0.936 -0.772 -0.659 

Fa 
0.702 0.827 0.765 0.685 0.613 0.552 

 

From equation (4.39), the friction coefficient is given as; 
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Clearly, the friction coefficient is a function of lsh ,  and 0H . Setting sh=1 and l=3, 

gives 
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Table 4.4: The table of values for friction coefficient   versus film thickness 0H   

 

 

The dimensionless volume flow rate Q is given by equation 4.42 as; 
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Film 

thickness 

ratio H0 

0 0.5 1 1.5 2 

Friction 

coefficient 

  

∞ 0.785 1.620 2.788 4.288 
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Table 4.5: A table of values for Q versus H0 is shown below; 

 

Film thickness 

ratio, H0 

 

0 

0.5 1 1.5 2.0 

Dimensionless 

volume flow 

rate, Q 

0 0.75 1.333 1.875 2.40 

 

From equation (4.45), the dimensionless adiabatic temperature rise is given by; 
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Table 4.6: The table of values for adiabatic temperature rise versus film 

thickness  

 

Film 

thickness 

ratio H0 

0 0.5 1.0 1.5 2.0 

Adiabatic 

temperature 

rise 
Q

H p
 

∞ 1.859 0.579 0.289 0.175 

The dimensionless Power Loss (Rate of working against viscous forces) is given by 

4.43 as;  
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 (5.5) 

Table 4.7: A table of values for Dimensionless power loss versus film thickness 

ratio  

 

Film thickness 

ratio, H0 

0 0.5 1 1.5 2 

Dimensionless 

power loss, Hp 

∞ 1.3944491547 0.7725887222 0.5433024951 0.4218604324 

 

The graph of P versus X for various values of H0 is as shown below; 
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Figure 5.1: Graph of dimensionless Pressure, P versus  dimensionless Cartesian 

coordinate X 

From figure 5.1, it is clear that Pressure distribution increases with decreasing H0.  

Since 
hs

h
H 0

0  ,  if the shoulder height sh is kept constant, the graph above indicates 

that as the outlet film thickness h0 becomes smaller, the pressure profile increases 

without any limits. The figure also shows that for large H0, there is little pressure 

build up for a fixed incline slider bearing. From equation (4.28), As H0→0, the 

location of the maximum pressure Xm→1. But as H0→∞, mX →
2

1
. Further, H0→0 

implies that either h0→0 or sh→∞. But H0→∞, implies that either h0→∞ or sh→0. 

The situation of sh→0, implies parallel surfaces, and parallel surfaces do not develop 

pressure. From equation (4.30), it is observed that sh→0, which corresponds to a 

parallel film, and sh→∞ both produce pm→0. The shoulder height that produces 

maximum pressure can be obtained from 
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.0




h

m

s

p
 Evaluating this gives; 

  02hs
opth               (5.1) 

Equation (5.1) will be useful in the design of fixed incline slider bearings. For 

instance, if the shoulder height hs  is known ,one can predict what the minimum outlet 

film thickness h0  should be. The shoulder height can then be established by using the 

safety factor.  

 

 

Figure 5.2: Variation of film thickness ratio with normal load carrying capacity 

Figure 5.2 shows that as H0→0, the potential of this bearing to support a load 

increases exponentially. 
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Figure 5.3 Effect of film thickness ratio on force components 

The dimensionless force components Wxa, Fb and Fa are plotted as functions of H0 in 

figure 5.3 above. The graph of friction coefficient   versus film thickness 0H  is as 

shown below; 
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Figure 5.4: Effect of film thickness ratio on friction coefficient 

From the graph, the frictional force parameter 𝜇 increases exponentially with 

increasing H0 
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A graph of Q versus H0 is shown below; 

  

 

Figure 5.5: Effect of film thickness ratio on volume flow rate 
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The graph of adiabatic temperature rise versus film thickness ratio is as shown below; 

 

Figure 5.6: Effect of film thickness ratio on adiabatic temperature rise 
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A graph of Dimensionless power loss versus film thickness ratio is shown below; 

 

Figure 5.7: Effect of film thickness ratio on power loss 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In this research, the analysis of the axial variation of various parameters on the 

flow of the lubricants under hydrodynamic lubrication condition between the 

plates of a fixed incline slider bearing has been done. The equations governing 

hydrodynamic flow considered in our study namely; the continuity equation, 

the Navier-stokes equations, the Reynolds equation. The Navier-stokes 

equation together with the continuity equation is used to derive the Reynolds 

equation. The Reynolds equation is then used to determine the pressure 

distribution of the lubricant in a fixed incline slider bearing. The normal load 

components, friction coefficient, volume flow rates, tangential and shear force 

components, power loss and temperature rise are determined and their 

variation along the bearing analyzed, discussed and represented graphically. In 

particular: 

1. The pressure profiles are in good agreement with published results for the 

bearing done in two dimensions 

2. The pressure profiles are in good agreement with published results for 

studies of thermos-hydrodynamic lubrication of a tilting pad step bearing. 

This proves the fidelity of our model. 
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5.2 Recommendation 

The author recommends the following; 

1. Due to variation in the pressure build up and thermal effects , a full fluid 

film condition may not always be attained. Therefore there is need to 

extend the study to a elasto-hydrodynamic and boundary lubrication 

analysis. 

2. In the research, the fluid flow was considered to be laminar. The same 

research can be carried out by considering a turbulent case. 

3. Also, in the research, a fixed incline slider bearing was considered. One 

may wish to carry out the same research on other types of bearings  

namely; Journal bearing, Step bearing etc. 

4. The research was carried out by keeping the viscosity of the lubricant 

constant. One can carry out the same research by considering the 

variations of lubricants viscosity. 

 

 

 

 

 

 

 

 

 

 



58 

 

REFFERENCES 

 

Shiuh-Hwa Shyu, Yeau-Ren Jeng and Chi-Cheng Chang(2004): “Load capacity for adiabatic 

infinitely wide wide plane slider bearings in the turbulent thermohydrodynamic 

regime” Journal of Tribology, vol. 47 pp (396-401). 

Miles Zengeyu, Mohamed Gadala and Guus segal(2006): “ Three dimensional modelling of 

thermo-hydrodynamic lubrication in slider bearings” International journal of 

computation and methodology vol. 49, issue 10, pp 947-968 

B. Maneshian and S.A. GandJalikh Nassab (2009) “Thermohydrodynamic analysis of 

turbulent flow in journal bearings running under different steady conditions” IJE 

Transactions vol. 223, issue number 8, pp. 1115-1127  

L.A. Abdel Latif, E.M. Bakr and M.I. Ghobrial (2009):  “Centrifugal effects of thermo 

hydrodynamic performance of circular pad thrust bearings” Journal of tribology issue 

no.111(3) pp 510-517  

Kyung Woong Kim (2009) “A three dimensional analysis of thermohydrodynamic 

performance of sector-shaped tilting –pad thrust bearings.” ASME Journal of 

tribology technology, Issue no. 105, pp. 406-412 

Sergei Glavatskih, Samuel Cupillard and Michel Cervantes (2009) “3D Thermo-

hydrodynamic analysis of a textured slider with a temperature dependant fluid”. 

Tribology international, Issues no. 10, pp. 1487-1495. 

Jun Sun, Mei Deng and Yong Hong Fu and Chang Lin Gui(2009) “Thermo-hydrodynamic 

analysis of misaligned plain journal bearing with surface roughness” Journal of 

tribology 132(1). pp. 1115 



59 

 

S. Bounbendir, S. Larbi and R. Bennacer(2011): ”Numerical study of the thermo-

hydrodynamic lubrication phenomenon in porous Journal bearings” Tribology 

international, vol 44, issue no. 1, pp 1-8 

Pascu Marius(2012): “ the influence of lubricants temperature on the functions of hydrostatic 

guidance systems.” Journal of Engineering studies and research Vol 18. Issue No. 4 

pp. 71-77 

Charitopoulos A., Fouflias D., Papadopoulos C.I., Kaiktsis L., Fill on M. (2013): 

“Computational Investigation of Thermo-elasto-hydrodynamic (TEHD) Lubrication 

in a Textured Sector-Pad Thrust Bearing” Journal of tribology, vol. 15, pp. 403-411 

P.R. Kiogora, M.N. Kinyanjui, David M Theuri. (2014):“Conservative scheme model of an 

inclined thrust pad thrust bearing”. International Journal of Engineering  Science and 

innovative technology, Vol. 3 Issue 1, pp 446-453 

P.R. Kiogora, M.N. Kinyanjui, David M Theuri (2014): ”Numerical solution of the 

momentum and energy equations of an inclined pad thrust bearing”. International 

Journal of Engineering  Science and innovative technology, Vol. 3, issue 3, pp 381-

388 

K.r. Kadam and S.S. Banwait (2014): “ The influence of modified viscosity-temperature 

equation on thermo-hydrodynamic analysis of plain journal bearing” American 

journal of mechanical engineering Vol 2 Issue no. 6, pp. 169-177. 

 


