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Abstract

In this article, characterization of the atomic state evolution in the Jaynes-Cummings (JC) and anti-
Jaynes-Cummings (aJC) models means using the reduced atomic state degree of purity, concurrence
and spin excitation number to determine the ranges and critical values of the mean photon number and
frequency detuning parameters at which the atom is in a disentangled pure, mixed or entangled state. By
unifying the mean photon number amplitude and detuning parameters in a simple relation, leaving the
mean photon number as the only variable parameter, we have discovered a beautiful natural evolution
property where the atom is in a uniformly mixed state describing symmetrical stable evolution of collapses
and revivals of the degree of purity and concurrence, one above and the other below, a uniformly mixed
state axis through points of equal degree of purity and concurrence at 1√

2
, with the revival turning points

coinciding on the axis. Within the small mean photon number n range 0 <
√
n ≤ 0.1, evolution from

an initial ground state |g0⟩ remains in a pure plane wave ground state in resonant strong coupling JC
model, but develops into an entangled state describing pure Rabi oscillations between the qubit states
|g0⟩ and |e1⟩ in the resonant strong coupling aJC model. The resonance strong coupling evolution is in
a mixed state in the range 0.1 <

√
n < 1, developing collapses and revivals, with spontaneous evolution

to short-lived, very nearly disentangled pure state, within the range 1 <
√
n ≤ 8.55 in both models. In

resonant weak coupling aJC model, increasing a residual detuning parameter to very large values generates
steady state time-independent evolution of the state measures at their appropriate maximum or minimum
values, signifying the atom in a completely disentangled pure state, stable mixed state or stable entangled
state, within well defined ranges of the mean photon number, up to a maximum

√
nmax = 11.2, where

the evolution reaches and remains in a maximally entangled state completely independent of detuning.
Similar ground state, mixed state, entangled state and maximally entangled state evolution regimes,
developing into steady state time-independent evolution, are also achievable in the off-resonance JC and
aJC models. In general, the atomic state evolves asymptotically to a maximally entangled state over long
interaction times. Finally, at a triple resonance property where the atomic state transition frequency,
field mode frequency and the atom-field mode coupling constant are all equal, the quantum Rabi model
reduces to JC and aJC spin-displaced field modes with well defined spectrum of energy eigenstates and
eigenvalues.

1 Introduction

The current state of development of quantum information processing and related quantum technologies needs
a much better understanding of models of interacting fully quantized systems. The best model is achieved
by specifying well defined qubit states and transition operators which constitute the basic structure of the
dynamical evolution of the system. In general, an interaction drives a system from an initial qubit state into
a superposition of qubit states, signifying the development of state coherence or entanglement properties used
as resources in quantum information processing, providing a general framework for quantum computation,
teleportation, communication, metrology, etc.

For example, the interaction of a quantized electromagnetic field initially in the vacuum state |0⟩ with a
classical electric current drives the field into a superposition of the number states |n⟩, while the interaction
of a two-level atom initially in the ground (excited) state |g⟩ (|e⟩) with a classical electromagnetic field drives
the atom into a superposition of the ground and excited states. The superposition of the number states
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constitutes a coherent state of the quantized light, while the superposition of atomic spin states constitutes a
coherent state of the atom. These are interesting alternate examples of semiclassical light-matter interactions
in which classical matter drives quantized light to a coherent state, while in the alternative model, classical
light drives quantized matter (two-level atom) to a coherent state. The question which immediately arises
is, what is the characteristic property of superposition states in a fully quantized light-matter interaction ?.
The answer is already well known in general form, which we address in greater detail in the present article.

A simple generalization to a fully quantized light-matter interaction consists of a two-level atom interacting
with a quantized electromagnetic field mode, known as the quantum Rabi model. Decomposition of the
quantum Rabi model into the algebraically inseparable Jaynes-Cummings (JC) and anti-Jaynes-Cummings
(aJC) components, each with a conserved excitation number operator, provides an exactly solvable qubit
interpretation [1 , 2] where the fully quantized light-atom interactions in the JC and aJC components treated
separately develop into superpositions of the respective qubit states, thus generally forming an entangled
light-atom state. The general time evolving entangled state describes dynamical evolution with collapses and
rivals of Rabi oscillations of excitations in the coupled qubit states.

In the current qubit interpretation of the quantum Rabi model defined explicitly below, it has been
established that the JC and aJC interaction models are duality symmetry conjugates, transforming into each
other through a duality symmetry operation [3]. The duality symmetry conjugation property means that the
JC and aJC models may be treated separately without the need for an approximation, such as the rotating
wave approximation (RWA) which has been applied over the years from 1963 [4] to reduce the quantum Rabi
model to the single exactly solvable JC component.

In the physics framework, the JC interaction mechanism generates red-sideband atom-field mode qubit
state transitions characterized by difference frequency detuning δ = ω0 − ω, while the aJC interaction
mechanism generates blue-sideband atom-field mode qubit state transitions characterized by sum frequency
detuning δ = ω0 + ω = δ + 2ω, meaning that the aJC model has a non-vanishing residual detuning 2ω
even under resonance ω0 = ω when the JC detuning vanishes (δ = 0). The existence of the non-vanishing
residual detuning of the aJC component then means that the full quantum Rabi model also has a non-
vanishing residual detuning 2ω, which may generally have been ignored, yet contributing significantly to
the observed dynamics in theoretical and experimental studies. A very important, essentially fundamental,
physical property is that the aJC interaction mechanism has non-zero excitations in the ground state |g0⟩
and generates blue-sideband transitions from the ground state, characterized by a time evolving entangled
state describing Rabi oscillations between the qubit states |g0⟩ and |e1⟩, while, on the other hand, the ground
state |g0⟩ is an eigenstate of the JC Hamiltonian, which therefore does not cause transitions, but generates
only a pure plane wave time evolution of the ground state. The important physical property that the aJC
component has non-zero excitations and generates qubit transitions from the ground state |g0⟩ obviously
shows up, and may be responsible for some observed effects, in the full quantum Rabi dynamics from an
initial ground state |g0⟩ generally preferred in experiments [5].

The clear understanding of the JC-aJC duality symmetry conjugation property and the internal physical
property that the aJC interaction mechanism has a non-vanishing residual detuning and naturally gener-
ates blue-sideband transitions from the ground state, strongly motivate a revisiting of the dynamics of the
quantum Rabi model, which have treated (partly) in this article through characterization of the atomic
state evolution, separately in both JC and aJC models. Characterization of the atomic state in the JC and
aJC models as developed here means specifying the ranges of values, and determining the critical values,
of physical parameters such as the mean photon number and frequency detunings where the atomic state,
described by a reduced density operator from the light-atom superposition state, is pure, mixed or entangled,
and if a coherent state property arises as in the corresponding semiclassical light-atom interactions. This
is particularly important for atomic state preparations, noting that in earlier studies of the atomic state
evolution in the JC model [6-11], it has been assumed that a disentangled pure state emerges in the limit of
very large mean photon number n→ ∞, whereas the evolution obtained in the present study reveals that the
atom-field mode state is maximally entangled, not pure, at

√
n ≥ 11.2, meaning that the original derivations

in [6 , 7 , 8 , 11] need a reinterpretation of the n→ ∞ approximation.
The earlier studies in resonant JC model, separately using the reduced atomic state purity measure [6] ,

von Newman entropy [9] and nonclassicality quantifier [12], revealed spontaneous evolution to a short-lived,
very nearly, pure state in the middle of the first collapse period of the atomic state population inversion. In
the present article, we have used the reduced atomic state degree of purity, concurrence and spin excitation
number in both resonant JC and aJC models to establish that the spontaneous evolution to a short-lived
very nearly pure state in the middle of the collapse period of the spin excitation number (or the related
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state population inversion) generally occurs within the mean photon number range 1 <
√
n ≤ 8.55, allowing

a maximum mean photon number nmax = (8.55)2. The approximate form of the disentangled pure state
derived in [6 , 7] and the related studies, must thus be limited to large mean photon number n ≤ (8.55)2.
For larger values 8.55 <

√
n < 11.2, the atomic state evolution is effectively in the mixed and entangled state

regimes, finally reaching and remaining in, the maximally entangled state at
√
n ≥ 11.2.

In this article, we use the reduced atomic state degree of purity, concurrence and spin excitation number
derived in an earlier article [13] to provide a comprehensive characterization of the atomic state evolution in
resonance and off-resonance JC and aJC dynamics. In unifying the mean photon number amplitude

√
n and

the frequency detuning parameters, leaving the mean photon number amplitude as the only variable physical
parameter, we have discovered a beautiful dynamical phenomenon, which we identify as natural evolution
in a uniformly mixed state. In natural evolution, the collapses and revivals of the degree of purity and
concurrence evolve symmetrically, one above and the other below, an axis passing through points where the
degree of purity and concurrence are equal, at 1√

2
, identified as the uniformly mixed state-axis. The revival

turning points of the degree of purity and concurrence coincide on the uniformly mixed state axis. The
regular symmetrical, nearly periodic, pattern of evolution about the uniformly mixed state axis leads to an
interpretation of the natural evolution property as a simple generalization of the resonance property to include
off-resonance dynamics, fixed by a relation unifying the mean photon number and the detuning parameters.
Keeping the mean photon number amplitude fixed at the natural evolution value, but progressively increasing
the detuning parameter generates periodic evolution in mixed states in the intermediate stages, developing
into steady state time-independent evolution signifying exact completely disentangled pure states or stable
mixed states or stable entangled states, noting that a maximally entangled state reached at

√
n ≥ 11.2 is

completely independent of the detuning parameters. We have also discovered an interesting physical property
that, under triple resonance condition where the field mode frequency ω, the atomic state transition frequency
ω0 and the atom-field mode coupling constant λ are all equal as λ = ω = ω0, the JC qubit reduces to a JC
spin-displaced field mode, with the aJC spin-displaced field mode arising as the duality symmetry conjugate.

We begin with a brief description of the quantum Rabi model in the JC and aJC qubit interpretation
in section 2, where we provide a complete general solution of the reduced density operator of the atom
and evaluate the degree of purity, concurrence and spin excitation number in each model. In section 3, we
present the characterization of the atomic state evolution, subdivided into natural evolution property in 3.1,
resonance dynamics in 3.2, off-resonance dynamics in 3.3. We introduce the triple resonance property of
intermediate coupling interaction and develop the resulting spin-displaced field modes in section 3.4. We
close with the Conclusion in section 4.

2 Atomic state in the JC and aJC models

The basic model of a two-level atom interacting with a single quantized mode of electromagnetic field is the
quantum Rabi model defined by Hamiltonian

HR = h̄ω

(
â†â+

1

2

)
+

1

2
h̄ω0σz + h̄g(â† + â)σx (1)

where σz, σ±, σx = σ+ + σ− , ω0 and â, â†, ω are the respective atomic spin and field mode state transition
operators and angular frequencies in standard definition. Here, we have included the field mode ground state
energy 1

2 h̄ω for anticipated symmetrization of the Hamiltonian HR as a sum of JC and aJC Hamiltonians.
Since the Pauli spin operators are used as order parameters for studying the dynamical properties of the
atom, we define them explicitly in terms of the atomic ground state |g⟩ and excited state |e⟩ in standard
form

σ+ = |e⟩⟨g| ; σ− = |g⟩⟨e| ; I = σ+σ− + σ−σ+ ; σz = σ+σ− − σ−σ+

σx = σ+ + σ− ; σy = −i(σ+ − σ−) (2)

The JC and aJC models are the rotating and antirotating components of the quantum Rabi model. From the
very beginning, the JC model has been known to have a conserved excitation number operator, which allows
exact solutions through a diagonalization method yielding eigenstates and eigenvalues of the Hamiltonian
[4]. This encouraged and enabled intensive theoretical and experimental studies of the general dynamical
and fundamental quantum mechanical features of the atom-field interaction within the weak-coupling regime
where the JC model is effective. On the other hand, the aJC component was believed to violate the energy
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conservation principle and therefore its dynamical properties were never studied directly, until the year
2017 when the present author applied basic algebraic properties to construct and prove conservation of an
excitation number operator for the aJC model [1]. The existence of conserved excitation number operators
has led to a simple physically intuitive and exactly solvable polariton and antipolariton qubit interpretation
[14], where the JC (polariton) qubit is characterized by a conserved excitation number operator N̂ and red-
sideband state transition operator R̂, while the aJC (antipolariton) qubit is characterized by a conserved

excitation number operator N̂ and blue-sideband state transition operator R̂, presented in comprehensive
form in [2]. In the qubit interpretation, a dynamical picture emerges that the JC and aJC models are two
algebraically inseparable components of the quantum Rabi model with Hamiltonian HR reformulated in
symmetrized JC (polariton) and aJC (antipolariton) qubit form [1 , 2 , 3 , 14]

HR =
1

2
(HJC +HaJC)

HJC = h̄ωN̂ + h̄R̂ ; N̂ = â†â+
1

2
σz = â†â+ σ+σ− − 1

2
; R̂ =

1

2
(ω0 − ω)σz + λ(âσ+ + â†σ−)

HaJC = h̄ω N̂ + h̄R̂ ; N̂ = ââ† − 1

2
σz = ââ† + σ−σ+ − 1

2
; R̂ =

1

2
(ω0 + ω)σz + λ(âσ− + â†σ+)

λ = 2g (3)

where (N̂ , R̂) , ( N̂ , R̂ ) are the respective conserved excitation number and qubit state transition operators,
while (ω0 − ω) , (ω0 + ω) are the JC red-sideband and aJC blue-sideband atom-field frequency detunings.
Note that, due to the symmetrization, the coupling constant λ in the JC , aJC Hamiltonians HJC , HaJC

is double the coupling constant g in the quantum Rabi Hamiltonian HR in equation (1), i.e., λ = 2g as
defined in equation (3). In [3], it has been established that the JC qubit Hamiltonian HJC and the aJC
qubit Hamiltonian HaJC are duality symmetry conjugates transforming into each other through a duality
symmetry operation.

The important characteristic features of the aJC interaction mechanism compared to the JC interaction
mechanism, which we explained earlier, are now evident in equation (3): (i) at resonance ω = ω0 where the
JC detuning ω0 − ω vanishes, the aJC detuning ω0 + ω always has a non-vanishing residual detuning equal
to twice the field mode frequency (2ω), meaning that the aJC dynamics is generally detuned, revealing the
important property that the quantum Rabi model as defined in equation (3) is internally detuned (ii) with
the atom in the ground state |g⟩ and the field mode in the vacuum state |0⟩, the aJC interaction mechanism
generates blue-sideband transitions |g0⟩ → |e1⟩ with dynamical evolution characterized by Rabi oscillations
between the qubit states, which cannot be achieved in the JC interaction mechanism, since the ground state
|g0⟩ is an eigenstate of the JC Hamiltonian HJC , as in equations (22) , (23) , (24) below (iii) an important
feature not immediately evident in equation (3) is that the aJC interaction mechanism generates purely
sub-Poissonian photon statistics, compared with the generally super-Poissonian photon statistics in the JC
model [15]. These interesting dynamical features of the aJC model are important for practical applications
in quantum information processing and related quantum technologies, yet they have not received much, if
any, attention in the existing published literature. It is therefore necessary to present an in-depth theoretical
study of the general dynamics of the aJC model to provide a useful framework for experiments and practical
applications.

As we explained earlier, the property that the JC and aJC models are duality symmetry conjugates allows
us to treat them separately. In a strict sense, the duality symmetry property means that we determine only
the general time evolving state vector of one component, JC or aJC, explicitly and then obtain the state
vector of the other component through the duality symmetry conjugation operation. However, to remain
consistent with the specification of an initial state of the atom-field interaction in the full quantum Rabi
model, we consider both JC and aJC interactions from the same initial state and determine the respective
general time evolving state vectors separately. Since a comprehensive characterization of the atomic state
evolution using the degree of purity, concurrence and spin excitation number has not been done in the JC
model as well, we treat both models side by side in this article.

For direct comparison of results with earlier original studies in the JC model [6 , 9 , 11 , 12], we consider
the atom-field initial state |ψgα⟩, where the atom is in the ground state |g⟩ and the field mode is in a coherent
state |α⟩, expressed as a superposition of the field mode number (Fock) states |n⟩. The atom-field mode initial
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state in the JC and aJC models then takes the product form

|ψgα⟩ =
∞∑

n=0

e−
1
2α

2

αn

√
n!

|gn⟩ (4)

A systematic method for determining the general time evolving state vector generated by the time evolution
operators UJC(t) = e−

i
h̄HJCt , UaJC(t) = e−

i
h̄HaJCt from the initial state in equation (4) is presented in

detail in [13], where the original formulation of the atomic state dynamics in the JC and aJC models in the
present context was developed. We present only the final results here.

In the JC model with qubit Hamiltonian HJC in equation (3), the general time evolving state vector
|ΨJC(t)⟩ is obtained and reorganized (Schmidt decomposition) in the form,

|ΨJC(t)⟩ =
∞∑

n=0

(
√
Pne

−iωnt(cos(Rnt) + icn sin(Rnt))|g⟩ − i
√
Pn+1e

−iω(n+1)tsn+1 sin(Rn+1t)|e⟩ )|n⟩

Rn = λ

√
n+

1

4
β2 ; cn =

ω0 − ω

2Rn
; Rn+1 = λ

√
n+ 1 +

1

4
β2 ; sn+1 =

λ
√
n+ 1

Rn+1
; β =

ω0 − ω

λ
(5)

while in the aJC model with qubit Hamiltonian HaJC in equation (3), the general time evolving state vector
|ΨaJC(t)⟩ is obtained and reorganized in the form

|ΨaJC(t)⟩ =
∞∑

n=0

(
√
Pne

−iω(n+1)t(cos( Rn+1t) + icn+1 sin( Rn+1t))|g⟩ − i
√
Pn−1e

−iωntsn sin( Rnt)|e⟩ )|n⟩

Rn+1 = λ

√
n+ 1 +

1

4
β
2
; cn+1 =

ω0 + ω

2Rn+1

; Rn = λ

√
n+

1

4
β
2
; sn =

λ
√
n

Rn

; β =
ω0 + ω

λ
(6)

where in each case in equations (5) , (6), the photon distribution probabilities are defined by

Pn+j =
e−n n(n+j)

(n+ j)!
; α =

√
n ; j = 0, 1,−1 (7)

where we have introduced the mean photon number n to define the real amplitude α =
√
n. Since we have

used the full qubit Hamiltonians HJC , HaJC , the general solutions in equations (5) , (6) include the time
evolving global phase factors e−iωnt , e−iω(n+1)t generated by the excitation number operator components

h̄ωN̂ , h̄ωN̂ . Note that we have dropped a common factor e−
i
2ωt.

In the definitions of the Rabi oscillation frequencies Rn+j , Rn+j , j = 0, 1 in equations (5) , (6), we have
introduced dimensionless JC and aJC detuning parameters β , β as defined above. Noting that these are
defined in terms of ω0 , ω, we reduce the parameter choices by considering that, in general, the frequency
detuning ω0 ∓ ω, means that the atomic state transition angular frequency ω0 is related to the field mode
angular frequency ω by a numerical factor k in the form ω0 = kω, where the value k = 1 specifies the
resonance condition. Using this relation in equations (5) , (6) and introducing a dimensionless parameter f
defined by ω = fλ, the dimensionless JC and aJC detuning parameters β , β now take the simple form

ω0 = kω ; ⇒ β = (k − 1)f ; β = (k + 1)f ; f =
ω

λ
; k > 0 (8)

which, for given k > 0 (automatically fixed by the values of ω0 , ω), depends only on the dimensionless
parameter f . We identify k as the dimensionless atom-field mode frequency detuning parameter. Resonance
dynamics is specified by k = 1. It follows that, under resonance k = 1, the JC and aJC detuning parameters
β , β in equation (8) take the form

Resonance ; k = 1 : JC : β = 0 ; aJC : β = 2f (9)

which shows that, in resonance dynamics specified by k = 1 and generally defined by ω = ω0, the JC detuning
vanishes (β = 0), while the aJC detuning reduces to β = 2f . Since the field mode frequency never vanishes
(ω > 0), the dimensionless parameter f = ω

g also never vanishes (f > 0). Noting that f defines the detuning

parameters according to equations (8) , (9), we have identified f > 0 as the non-vanishing residual detuning
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parameter. The important physical property which we reemphasize here is that the JC detuning vanishes at
resonance, while the aJC interaction remains detuned both in-resonance (k = 1 , ω = ω0) and off-resonance
(k ̸= 1 , ω ̸= ω0), meaning that the quantum Rabi model defined by HR = 1

2 (HJC +HaJC) in equation (3)
is intrinsically detuned, thus experiencing effects of detuning both in-resonance and off-resonance.

Substituting β = (k − 1)f , β = (k + 1)f from equation (8) into equations (5) , (6), the Rabi frequencies
Rn+j , Rn+j , j = 0, 1 and the related interaction parameters take the form

JC : Rn+j = λ

√
n+ j +

1

4
(k − 1)2f2 ; cn+j =

(k − 1)f

2
√
n+ j + 1

4 (k − 1)2f2

sn+j =

√
n+ j√

n+ j + 1
4 (k − 1)2f2

aJC : Rn+j = λ

√
n+ j +

1

4
(k + 1)2f2 ; cn+j =

(k + 1)f

2
√
n+ j + 1

4 (k + 1)2f2

sn+j =

√
n+ j√

n+ j + 1
4 (k + 1)2f2

; j = 0, 1 (10)

Substituting the photon distribution probabilities Pn+j , field mode frequency ω = fλ, Rabi frequencies
Rn+j , Rn+j and the related parameters from equations (7) , (8) , (10) into the general time evolving state
vectors in equations (5) , (6) and introducing scaled time τ = λt then means that the only parameters which
characterize the dynamical evolution in the JC and aJC models are the mean photon number amplitude

√
n

of the coherent field mode and the non-vanishing residual detuning parameter f , noting that the numerical
factor k is automatically fixed by the atomic state transition and field mode frequencies ω0 , ω according to
the relation in equation (8).

We observe that, by its definition as the ratio of the field mode angular frequency ω to the atom-field
mode coupling constant g in equation (8), the dimensionless residual detuning parameter f = ω

λ specifies the
coupling regimes in both JC and aJC models, noting that f is essentially the inverse of the coupling strength
in standard definitions used in [5] and related works. The strong coupling interaction characterized by g > ω
is specified by parameter values 0 < f < 1, the weak coupling interaction characterized by g < ω is specified
by f > 1 and the intermediate coupling interaction characterized by g = ω is specified by f = 1. Hence,
specifying the residual detuning parameter values within the range 0 < f < 1 characterizes strong coupling
interaction, while values in the open range f > 1 (1 < f < ∞) characterizes weak coupling interaction and
the specific boundary value f = 1 characterizes an interesting intermediate coupling interaction where the JC
and aJC qubit Hamiltonians each factorizes precisely as a normal order product of spin-displaced bipartite
state annihilation and creation operators, forming the Hamiltonian of a spin-displaced field mode with an
exact spectrum of energy eigenstates. The aJC spin-displaced field mode is directly interpreted as a duality-
symmetry conjugate of the JC spin-displaced field mode. Interestingly, the factorization into a spin-displaced
field mode operators may be related to the interaction mechanism at the quantum phase transition of the
JC model at critical coupling λc = 2gc =

√
ω0ω, equivalent to the established critical coupling of the full

quantum Rabi model at gc =
1
2

√
ω0ω.

The general dynamics of the bipartite atom-field system is described by a density operator ρJC(t) =
|ΨJC(t)⟩⟨ΨJC(t)| in the JC model and ρaJC(t) = |ΨaJC(t)⟩⟨ΨaJC(t)| in the aJC model. The general dynamics
of the atom is described by the respective reduced density operators ρa(t) , ρa(t) obtained by tracing out the
field mode states from the corresponding bipartite density operators according to

ρa(t) = TrfρJC(t) = Trf |ΨJC(t)⟩⟨ΨJC(t)| ; ρa(t) = TrfρaJC(t) = Trf |ΨaJC(t)⟩⟨ΨaJC(t)| (11)

Substituting the JC and aJC general time evolving state vectors |ΨJC(t)⟩ , |ΨaJC(t)⟩ from equations (5) ,
(6) , (7) into equation (11) as appropriate provides the atomic state reduced density operator ρa(t) in the
JC model in the explicit form (details in [13])

JC : ρa(t) =
1

2
(1 + r · σ⃗) ; r = (r1 , r2 , r3)

6



r3 =
∞∑

n=0

Pn+1s
2
n+1 sin

2(Rn+1t)−
∞∑

n=0

Pn(cos
2(Rnt) + c2n sin

2(Rnt))

r1 = −2
∞∑

n=0

√
Pn+1Pnsn+1 sin(Rn+1t)(sin(ωt) cos(Rnt) + cn cos(ωt) sin(Rnt) )

r2 = 2
∞∑

n=0

√
Pn+1Pnsn+1 sin(Rn+1t)(cos(ωt) cos(Rnt)− cn sin(ωt) sin(Rnt) )

Trρa(t) = 1 (12)

and the atomic state reduced density operator ρa(t) in the aJC model in the explicit form

aJC : ρa(t) =
1

2
(1 + r · σ⃗) ; r = (r1 , r2 , r3)

r3 =
∞∑

n=0

Pn−1s
2
n sin

2( Rnt)−
∞∑

n=0

Pn(cos
2( Rn+1t) + c2n+1 sin

2( Rn+1t))

r1 = 2
∞∑

n=0

√
PnPn−1sn sin( Rnt)(sin(ωt) cos( Rn+1t)− cn+1 cos(ωt) sin( Rn+1t) )

r2 = 2
∞∑

n=0

√
PnPn−1sn sin( Rnt)(cos(ωt) cos( Rn+1t) + cn+1 sin(ωt) sin( Rn+1t) )

Trρa(t) = 1 (13)

In equations (12) , (13), r = (r1 , r2 , r3) , r = (r1 , r2 , r3), are the respective radius vectors of the Bloch
spheres of the atomic states in the JC and aJC models, while σ⃗ = (σx , σy , σz) ≡ (σ1 , σ2 , σ3) is the
Pauli spin operator vector defined in equation (2). The important feature which emerges here is that the
coherence components (r1 , r2) , (r1 , r2) in equations (12) , (13), are modulated by the periodically time
varying field mode frequency-dependent factors sin(ωt) , cos(ωt) from the respective free evolution global
phase factors e−iωnt , e−iω(n+1)t of the general solutions in equations (5) , (6). In general, the Bloch sphere
radius vector components rj , rj are obtained as the mean values of the corresponding Pauli spin operators
σj with respect to the respective reduced density operators ρa(t) , ρa(t) of the atom in the respective JC ,
aJC model according to

rj = Trσjρa(t) ; rj = Trσjρa(t) ; j = 1, 2, 3 ≡ x, y, z (14)

The determination of the reduced density operators ρa(t) , ρa(t) in explicit form in equations (12) , (13)
constitutes a complete general solution for describing the dynamics of the atom in the JC and aJC models.
According to the general definitions in equation (14), the Bloch vector components r3 , r3 describe the atomic
state population inversion, related to the respective atomic spin excitation numbers in the form

JC : ⟨σ+σ−⟩ = Trσ+σ−ρa(t) =
1

2
(1 + r3) ; aJC : ⟨σ−σ+⟩ = Trσ−σ+ρa(t) =

1

2
(1− r3) (15)

while the components (r1 , r2) , (r1 , r2) describe the coherence properties of the atom.
The Bloch sphere is the geometrical configuration containing possible quantum states of the atom. The

states are distributed inside and on the surface of the sphere, where the states inside are mixed states,
while the states on the surface are pure states. The time evolution of the Bloch radius r =

√
r21 + r22 + r23 ,

r =
√
r21 + r22 + r23 describes the evolution of the quantum states of the atom.

A complete description of the atomic state evolution is provided by the state purity operator ρ2a(t) in the
JC model and ρ2a(t) in the aJC model. As developed in great detail in [13], all the characteristic elements
of measures of atomic state purity or entanglement are derivable from the state purity operator. From these
derivations, we have introduced a degree of purity and concurrence, which are complementary measures of
state purity or entanglement, intricately connected by a complementarity relation.

With the normalized reduced density operators ρa(t) , ρa(t) in equations (12) , (13), the atomic state
purity operators in the JC and aJC models are obtained in the explicit form (details in [13])

JC : ρ2a = ρa −MI ; M =
1

4
(1− r2) = detρa ; r = |r| =

√
r21 + r22 + r23
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aJC : ρ2a = ρa −MI ; M =
1

4
(1− r2) = detρa ; r = |r| =

√
r21 + r22 + r23 (16)

where in the respective JC , aJC models, the quantity M , M, determines the departure from a pure state.
We identifyM , M, as amixed state measure. As comprehensively elaborated in [13], the mixed state measure
can be defined as a composite of the various characteristic elements of measures of atomic state purity or
entanglement. Here, we consider only two measures, the degree of purity D and the concurrence C, noting
that in [13], the degree of purity is defined in terms of a phase angle φ of the state purity measure complex
amplitude in the form D = tanφ. The degree of purity and concurrence are connected by a complementarity
relation

D2 + C2 = 1 (17)

In the separate notations for JC and aJC models, the degree of purity and concurrence are obtained as [13]

JC : D =

√
1− 4detρa

(Trρa)2
= |r| ; C = 2

√
detρa

aJC : D =

√
1− 4detρa

(Trρa)
2

= |r| ; C = 2
√
detρa (18)

where the final form D = |r| , D = |r|, follows easily from substitution of the relations for detρa , detρa from
equation (16) and the normalization Trρa = 1 , Trρa = 1 from equations (12) , (13). For normalized ρa(t) ,
ρa(t), the degree of purity and concurrence are seen to satisfy the complementarity relation in equation (17).
Notice that for the normalized ρa(t) , ρa(t), the degree of purity equals the Bloch sphere radius |r| , |r|, in
the JC and aJC models.

According to the complementarity relation in equation (17), the time evolving degree of purity D and
concurrence C alternately take complementary values within the range {0 , 1}, each having minimum value
0 and maximum value 1. When the degree of purity is at its maximum value D = 1, the atom is in a
completely disentangled pure state where the concurrence is at its minimum value C = 0, while, on the other
hand, when the degree of purity is at its minimum value D = 0, the atom is in a totally mixed or maximally
entangled state where the concurrence is at its maximum value C = 1. Hence, the atomic state evolution is
measured by the degree of purity and concurrence, such that at (D = 1 , C = 0), the atom is in a completely
disentangled pure state, while at (D = 0 , C = 1), the atom is in a totally mixed or maximally entangled
state. An interesting uniformly mixed state occurs when the degree of purity and concurrence are equal at
(D = 1√

2
, C = 1√

2
). We interpret the degree of purity and concurrence as the basic measures of the atomic

state evolution.

3 Characterization of the dynamical evolution of the atomic state
in the JC and aJC models

We can now use the atomic spin excitation number determined in equation (15) and the complementarity
connected degree of purity and concurrence determined in equation (16), as the basic order parameters for
studying the dynamical properties of the atom in the JC and aJC models. The atomic spin excitation number
measures transitions between the qubit states signified by Rabi oscillations, while the degree of purity and
concurrence measure the evolution of the atomic state characterized as pure, mixed or entangled.

In a useful departure from the arbitrariness of choices of physical parameters in earlier studies, we present
a systematic characterization of the atomic state evolution using only the mean photon number amplitude

√
n

of the coherent field mode and the dimensionless residual detuning parameters f , noting that the atom-field
mode frequency detuning parameter k is fixed at k = 1 under resonance, but can be unified with

√
n and

f as we introduce a property of natural evolution which essentially extends the form of resonance dynamics
into the off-resonance regime.

3.1 Unifying parameters : natural evolution and a uniformly mixed state

To obtain a simple efficient characterization of the atomic state evolution in the JC and aJC dynamics
as developed in this article, we unify the mean photon number amplitude

√
n and the residual detuning

8



parameter f by introducing simple linear relation in the form

f = ϵ
√
n ; ϵ > 0 (19)

where ϵ > 0 is a numerical factor. This parameter unification now leaves the mean photon number amplitude√
n as the only variable physical control parameter, noting that the dimensionless atom-field mode frequency

detuning parameter k > 0 is automatically fixed by the frequencies ω0 , ω, where k = 1 specifies resonance,
while k ̸= 1 specifies off-resonance dynamics.

Substituting f = ϵ
√
n from equation (19) into the Rabi frequencies Rn+j , Rn+j and the related parame-

ters in equation (10), evolution of the degree of purity D and concurrence C reveals a characteristic dynamical
feature emerging at ϵ = 1, which we identify as natural evolution, describing the dynamics of the atom in
a uniformly mixed state, characterized by a symmetrical evolution of the degree of purity and concurrence
about an axis passing through points where the degree of purity equals the concurrence, i.e., D = C-axis, de-
fined as the uniformly mixed state-axis. Hence, taking into account the complementarity relation in equation
(17), the general natural evolution property is defined together with the uniformly mixed state axis as

natural evolution property : ϵ = 1 ; f =
√
n

Uniformly mixed state axis : D = C =
1√
2

(20)

In resonance dynamics where k is fixed at k = 1, the natural evolution property is defined as

resonance natural evolution : k = 1 ; ϵ = 1 ; f =
√
n (21)

In defining natural evolution property in off-resonance k ̸= 1 dynamics, we note that the larger aJC detuning
parameter β = (k+1)f compared to the JC detuning parameter β = (k−1)f means that, at a given value of
the residual detuning parameter f , the dynamical evolution in the aJC model is generally faster than in the
JC model. To synchronize the rates of dynamical evolution in the JC and aJC interaction mechanisms, the
natural evolution property in off-resonance k ̸= 1 dynamics is defined by setting the mean photon number
amplitude

√
n directly proportional to the product of k and f as

off − resonance natural evolution : k ̸= 1 ; ϵ = 1 ;
√
n =

1

2
kf ⇒ f =

2
√
n

k
(22)

The simple unifying relations in equations (20) , (21) , (22) show that the characteristic features of the
atom-field mode dynamics are determined only by α, as clarified in the discussion in sections 3.2 , 3.3 below.
Notice that the resonance natural evolution property in equation (21) effectively defines

√
n = ω

λ (in terms
of the field mode frequency ω as in [5]), while the off-resonance natural evolution property in equation
(22) effectively defines

√
n = 1

2
ω0

λ (in terms of the atomic state transition frequency ω0). In describing the
characteristic features of natural evolution according to the atom-field mode coupling strengths in resonance
or off-resonance dynamics in the JC and aJC models, we apply the property that strong coupling interaction
is determined by the residual detuning parameter f > 0 in the small value range 0 < f < 1, while weak
coupling interaction is determined by the large value range f > 1 (i.e., 1 < f <∞).

In general, natural evolution of the atomic state is a beautiful stable dynamical process composed of well
defined atomic state regimes in resonance k = 1 and off-resonance k ̸= 1. In particular, in resonance k = 1
dynamics, natural evolution in the strong coupling 0 < f < 1 region is composed of a ground state regime
within the mean photon number amplitude range 0 <

√
n = f ≤ 0.1 and amixed state regime within the range

0.1 <
√
n = f < 1, while in the weak coupling f > 1 (1 < f <∞) region, natural evolution is composed of a

reversible mixed state regime within the range 1 <
√
n = f ≤ 8.55, an irreversible mixed state regime within

the range 8.55 <
√
n = f ≤ 9.2, a reversible entangled state regime within the range 9.2 <

√
n = f ≤ 9.57

and an irreversible entangled state regime within the range 9.57 <
√
n = f < 11.2. A maximally entangled

state regime occurring at
√
n ≥ 11.2 is completely independent of the detuning parameters k > 0 , f > 0.

Similar characteristic atomic state evolution regimes also occur in off-resonance k ̸= 1 natural evolution, but
now the general nature is determined also by k ̸= 1 in the small value range 0 < k < 1 or large value range
k > 1.

We interpret the natural evolution property at ϵ = 1 ,
√
n = f under resonance k = 1 and

√
n = k

2f
off-resonance ̸= 1, as the optimal dynamics of the system in a uniformly mixed state over the entire strong
coupling 0 < f < 1 and weak coupling f > 1 ranges of the JC and aJC models. The natural evolution
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property essentially generalizes the characteristic features of resonance dynamics to include off-resonance
dynamics. Characterization of the atomic state evolution, revealing general features of the dynamics, then
begins from the uniformly mixed state in natural evolution, determined by keeping the mean photon number
amplitude fixed at the natural evolution value, while varying the residual or atom-field mode frequency
detuning parameter f , k to larger or smaller values as appropriate. In this respect, we note that in the strong
coupling region where the residual detuning parameter is restricted within the small value range 0 < f < 1,
only the mean photon number amplitude is increased to larger values, up to a maximum value

√
nmax = 11.2,

where the concurrence and degree of purity reach their respective steady state time-independent maximum
and minimum values (

√
n = 11.2 : C = 1 , D = 0), signifying a maximally entangled state. The onset of

the maximally entangled state at
√
n = 11.2 applies generally in both strong and weak coupling interactions.

This maximally entangled state describes steady state time-independent evolution which does not change
with further increases

√
n > 11.2 and is completely independent of the detuning parameters over the entire

ranges f > 0 , k > 0.
Generally, in both resonance and off-resonance JC and aJC dynamics, increasing the mean photon number

amplitude
√
n raises the concurrence towards its steady state time-independent maximum value C = 1, but

lowers the degree of purity towards the corresponding minimum value D = 0 at
√
n ≥ 11.2, where the

state is maximally entangled. On the other hand, in resonance k = 1 dynamics, increasing the residual
detuning parameter f within the various state evolution regimes raises the degree of purity towards the
respective steady state time-independent maximum values Dmax ≤ 1, but lowers the concurrence towards
the corresponding minimum values Cmin ≥ 0 at appropriate critical values fc >> 1; similar pattern of
evolution occurs in off-resonance k ̸= 1 on decreasing k to lower values k < 1. We note that under resonance
k = 1, the JC dynamics, which is completely independent of the residual detuning parameter f , cannot
achieve a steady state time-independent evolution. Hence, in resonance k = 1 dynamics, increasing f affects
only the atomic state evolution in the aJC model, which achieves steady state time-independent evolution at
critical values fc >> 1. However, in off-resonance k ̸= 1 dynamics, varying f affects atomic state evolution
in both JC and aJC models, leading to the property that off-resonance JC dynamics can achieve steady state
time-independent evolution.

In an interpretation, (i) increasing the mean photon number amplitude
√
n drives the atomic state

towards the maximally entangled state (ii) the growth of the degree of purity towards the steady state time-
independent maximum value D = 1, with the concurrence falling towards the corresponding minimum value
C = 0 signifies evolution of the atomic state towards a completely disentangled pure state, while the growth of
the concurrence towards the steady state time-independent maximum value C = 1, with the degree of purity
falling towards the corresponding minimum value D = 0 signifies evolution of the atomic state towards a
maximally entangled state; on increasing the residual detuning parameter f or decreasing the atom-field mode
frequency detuning parameter k in the aJC model and in off-resonance JC model, the dynamics progresses
through intermediate mixed or entangled states describing periodic evolution, developing towards steady
state time-independent evolution in a completely disentangled pure state or stable mixed state or stable
entangled state; we emphasize that resonance JC dynamics cannot reach a steady state time-independent
evolution (iii) the evolution of the spin excitation number with increasing

√
n , f , or decreasing/increasing

k, essentially measures transitions characterized by Rabi oscillations between the qubit states.
We have established that the maximally entangled state also emerges naturally in evolution over a long

interaction time, where the concurrence grows asymptotically towards the steady state time-independent
maximum value 1, while the degree of purity decays asymptotically towards the corresponding minimum value
0 over increasing interaction time. After some time tc > 0 within the long interaction time, the concurrence
and degree of purity reach and remain at their respective steady state time-independent maximum and
minimum values (C = 1 , D = 0), where the atom now remains in a stable maximally entangled state.

Considering resonance k = 1 dynamics, we study the natural evolution of the atomic state and Rabi
oscillations between the qubit states determined by 0 <

√
n = f < 1 in the strong coupling and

√
n =

f > 1 (1 <
√
n = f < ∞) in the weak coupling JC and aJC models in sections 3.2 below. In the

strong coupling dynamics in section 3.2.1, we keep the residual aJC detuning parameter f fixed in the range
0 < f < 1, but progressively increase the mean photon number amplitude

√
n to study the development

of the natural evolution of the atomic state into a time-independent completely disentangled pure state or
maximally entangled state, while in the weak coupling dynamics in section 3.2.2, we study the same process
by progressively increasing either the mean photon number amplitude or the residual detuning parameter
f , keeping the other fixed in each case. We present off-resonance k ̸= 1 dynamics in section 3.3, followed
by a beautiful formulation of resonance k = 1 intermediate coupling f = 1 interaction, developed as a
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spin-displaced field mode with an exact eigenstate spectrum, in section 3.4.

3.2 Resonance dynamics

In standard studies of the JC model, the resonance condition ω = ω0 (k = 1) is applied to obtain an optimal
dynamical evolution characterized by an exact exchange of energy between the atom and field mode, one
emitting and the other absorbing, the same amount of energy (h̄ω = h̄ω0). In this article, we use the degree of
purity, concurrence and spin excitation number to present a fairly more general study of resonance dynamics
characterized by k = 1 in both JC and aJC models.

The resonance k = 1 condition specified in equation (9) shows that the dimensionless JC detuning
parameter vanishes as β = 0, but the aJC remains detuned by the non-vanishing residual detuning parameter
as β = 2f > 0. The resonant JC dynamics is thus driven only by the mean photon number amplitude

√
n,

while the resonant aJC dynamics is driven by both
√
n and f . Specifically, in the resonance dynamics, setting

k = 1 in equation (10) gives Rabi frequencies and related interaction parameters in the resonant JC and aJC
models in the form

k = 1

JC : Rn+j = λ
√
n+ j ; cn+j = 0 ; sn+j = 1

aJC : Rn+j = λ
√
n+ j + f2 ; cn+j =

f√
n+ j + f2

; sn+j =

√
n+ j√

n+ j + f2
; j = 0, 1 (23)

For effective characterization of the atomic state, we apply the resonance natural evolution property from
equation (21) in equation (23) according to

k = 1 ; ϵ = 1 ; f =
√
n (21′)

We immediately see a distinct difference between the JC and aJC interaction mechanisms in resonance
k = 1 dynamics. The resonant JC Rabi frequency and related interaction parameters Rn+j , cn+j , sn+j

in equation (23) are completely independent of the residual detuning parameter f , while the corresponding
aJC Rabi frequency and related interaction parameters Rn+j , cn+j , sn+j are intrinsically dependent on the
parameter f . The atomic state evolution in the resonant JC model is therefore characterized only by the mean
photon number amplitude

√
n in the photon distribution probability amplitudes

√
Pn+j , while the evolution

in the resonant aJC model is characterized by both
√
n in the photon distribution probability amplitudes

and the residual detuning parameter f defining the Rabi frequency and related interaction parameters.
In the resonance natural evolution property in equation (21′), the resonant JC dynamics, driven only by√
n, remains the same, unaffected by f > 0, throughout the strong interaction 0 < f < 1 and the weak

interaction 1 < f < ∞ regimes, while the corresponding resonant aJC dynamics, driven by both
√
n and

f , is characterized by the interesting detailed features of natural evolution property f =
√
n described by

a uniformly mixed atomic state, which develops into steady state time-independent evolution on increasing
the residual detuning parameter from the natural evolution value f =

√
n to larger critical values fc = ϵc

√
n,

ϵc >> 1, where the atom is in a completely disentangled pure state or stable mixed state or stable entangled
state. In the resonant JC dynamics, the atomic state can evolve only into a short-lived nearly pure state in
the middle of the collapse period of the spin excitation number within a state evolution regime specified by√
n ≤ 8.55, but cannot develop into a steady state time-independent evolution, except at the critical value√
nc = 11.2 where the evolution reaches the maximally entangled state in both JC and aJC models.

3.2.1 Atomic state evolution in the resonant strong coupling interaction : k = 1 ; 0 < f < 1

As defined above, the strong coupling interaction is characterized by the residual detuning parameter f in
the range 0 < f < 1. In the resonant strong coupling JC and aJC models, the natural evolution property of
the atomic state in equation (21′) is set by

k = 1 ; f =
√
n ⇒ 0 < f =

√
n < 1 (24)

meaning that resonance natural evolution in the strong coupling regime is characterized by both residual
detuning parameter f and mean photon number amplitude

√
n in the small value range 0 < f =

√
n < 1,

which we now describe.
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Setting f =
√
n in equation (23) and substituting the respective Rabi frequencies and related interaction

parameters into the corresponding Bloch radius components obtained in equations (7) , (12) , (13), we
determine explicit time evolving forms of the respective spin excitation numbers ⟨σ+σ−⟩ , ⟨σ−σ+⟩, degree of
purity D , D and concurrence C , C defined in equations (15) and (18), noting the complementarity relation
C =

√
1−D2 in equation (17). For

√
n = f in the range 0 <

√
n = f < 1, we have plotted the degree of

purity, concurrence and spin excitation number over scaled time τ = λt to determine the natural evolution
of the atomic state in the resonant strong coupling JC model in Fig.1 , Fig.3 and aJC model in Fig.2 , Fig.4.
In the plots, we have identified the degree of purity, concurrence and spin excitation number collectively as
state quantifiers, but distinguished them by colors as appropriate.

The natural evolution of the atomic state in the resonant strong coupling JC and aJC models is composed
of two distinct dynamical regimes. The first regime occurs in the parameter range 0 <

√
n = f ≤ 0.1, which

we have identified as the ground state evolution regime, plotted over scaled time τ = λt in Fig.1 in the JC
model and Fig.2 in the aJC model. The second regime occurs in the parameter range 0.1 <

√
n = f < 1,

which we have identified as the mixed state evolution regime, plotted in Fig.3 in the JC model and Fig.4 in
the aJC model.

In each Figure throughout the text, we have provided the uniformly mixed state-axis passing through
points where the degree of purity and concurrence have equal values D = C = 1√

2
.

A. Ground state evolution regime : 0 <
√
n = f ≤ 0.1

The ground state evolution regime is characterized by small mean photon number amplitude
√
n within the

range 0 <
√
n ≤ 0.1 where the initial field mode is strictly in the vacuum state |0⟩ and the coherent state |α⟩

(α ≡
√
n) expansion contains only the vacuum state. Hence, in the small mean photon number amplitude√

n range 0 <
√
n < 0.1, the expansion of the atom-field initial state in equation (4) contains only the ground

state |ψgα⟩ = |g0⟩.
We have plotted the ground state evolution in the resonant strong coupling JC model in Fig.1. The
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Figure 1: Natural evolution of degree of atomic state purity D (BLUE), concurrence C (RED-not visible
at minimum value 0 exactly along τ -axis) and excitation number ⟨σ+σ−⟩ (GREEN-not visible at min-
imum value 0 exactly along τ -axis) in the resonant strong coupling JC model at k = 1 ;

√
n = f =

0.015 (within the ground state evolution regime 0 <
√
n = f ≤ 0.1) over scaled time τ = λt

evolution in Fig.1 reveals that, within the ground state evolution regime 0 <
√
n = f ≤ 0.1 in the resonant

strong coupling JC model, the atomic state remains a completely disentangled pure state where the degree
of purity (blue) is at the time-independent maximum value D = 1, while the concurrence (red-not clearly
visible along the time τ -axis) and spin excitation number (yellow-not clearly visible along the time τ -axis)
are both at their time-independent minimum values (C = 0 , ⟨σ+σ−⟩ = 0).

To account for the form of natural evolution in Fig.1 in the JC model, we note that the ground state
|g0⟩ is an eigenstate of the JC Hamiltonian HJC in equation (3) [2 , 17]. Hence, the JC interaction does not
cause transitions from the initial state |ψgα⟩ = |g0⟩, but generates only a plane wave evolution according to

N̂ |g0⟩ = −1

2
|g0⟩ ; R̂|g0⟩ = −1

2
(ω0 − ω)|g0⟩ ⇒ |ΨJC(t)⟩ = e

i
2ω0t|g0⟩ (25)

This plane wave is a separable pure state |ΨJC(t)⟩ = e
i
2ω0t|g⟩|0⟩ of the atom and field mode ground states,

where it is easily established that the atomic spin excitation number is 0, the degree of purity is exactly at
the maximum value 1 and the concurrence exactly at its minimum value 0, as Fig.1 shows. This signifies the
property that within the ground state evolution regime 0 <

√
n = f < 1 of the resonant strong coupling JC
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model, the atom remains in a pure state, essentially its time evolving ground state e
i
2ω0t|g⟩. This explains the

time-independent degree of purity at maximum value 1, concurrence and spin excitation number at minimum
values 0 in Fig.1.

We have plotted the ground state evolution in the resonant strong coupling aJC model in Fig.2.
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Figure 2: Natural evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and ex-
citation number ⟨σ−σ+⟩ (YELLOW) in the resonant strong coupling aJC model at k = 1 ;

√
n = f =

0.015 (within the ground state evolution regime 0 <
√
n = f ≤ 0.1) over scaled time τ = λt

The evolution in Fig.2 reveals that, within the ground state evolution regime 0 <
√
n = f ≤ 0.1 in resonant

strong coupling aJC model, the atomic state is characterized by perfect Rabi oscillations of the degree of
purity (blue) , concurrence (red) and spin excitation number (yellow). The interesting features of the Rabi
oscillations in Fig.2 are (i) the degree of purity and concurrence undergo alternate Rabi oscillations of equal
period between their maximum and minimum values {1 , 0} in opposite sense, one rising, the other falling,
and vice-versa, signifying the property that within the ground state evolution regime 0 <

√
n = f ≤ 0.1 of the

resonant strong coupling aJC model, the atomic state alternately evolves periodically between a completely
disentangled pure state and a maximally entangled state (ii) the degree of purity and concurrence cross at
points on the uniformly mixed state axis (green-axis) where D = C = 1√

2
(iii) the period of Rabi oscillations

of the spin excitation number is double the equal periods of Rabi oscillations of the degree of purity and
concurrence (iv) the maximum of the spin excitation number coincides with the maximum of the degree of
purity, while the minimum of the spin excitation number coincides with the minimum of the concurrence, each
after every two periods of oscillations of the degree of purity and concurrence (iv) the dynamical property
that the evolution of the spin excitation number begins from the maximum value ⟨σ−σ+⟩ = 1 at initial time
τ = 0 signifies a fundamental quantum mechanical phenomenon that the ground state |g0⟩ in the aJC model
is excited.

To account for the perfect periodic Rabi oscillations in Fig.2 in the aJC model, we note that the ground
state |g0⟩ is a qubit state of the aJC Hamiltonian HaJC in equation (3) [2], with qubit state transitions and
general time evolving state vector obtained in the general form

N̂ |g0⟩ = 3

2
|g0⟩ ; R̂|g0⟩ = R0| ϕg0⟩ ; | ϕg0⟩ = −c0|g0⟩+ s0|e1⟩ ; R0 = λ

√
1 +

1

4
(k + 1)2f2

c0 =
(k + 1)f

2
√

1 + 1
4 (k + 1)2f2

; s0 =
1√

1 + 1
4 (k + 1)2f2

|ΨaJC(t)⟩ = e−
3
2 iωt

(
(cos( R0t) + i c0 sin( R0t))|g0⟩ − i s0 sin( R0t)|e1⟩

)
(26)

Setting the resonance value k = 1 in R0 , c0 , s0 and applying an approximation 1 >> f within the ground
state evolution range 0 <

√
n = f ≤ 0.1 gives

k = 1 ; f << 1 ⇒ R0 ≈ λ ; c0 ≈ 0 ; s0 ≈ 1

|ΨaJC(t)⟩ ≈ e−
3
2 iωt (cos( λt)|g0⟩ − i sin( λt)|e1⟩) (27)

which describes periodic blue-sideband transitions between the ground state |g0⟩ and the one-photon excited
state |e1⟩ at Rabi oscillation frequency R0 = λ. The precise periodic evolution described by the time
evolving aJC state vector |ΨaJC(t) > in equation (27) explains the perfect periodic Rabi oscillations between
maximum and minimum values {1 , 0} of the degree of purity (blue), concurrence (red) and spin excitation
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number (yellow) in Fig.2, showing that natural evolution within the ground state regime 0 <
√
n = f ≤ 0.1

in resonant strong coupling aJC interaction describes the atomic state spontaneously evolving alternately
between short-lived (sharp maxima and minima) completely disentangled pure and maximally entangled
states.

We observe that the elimination of the residual detuning parameter f through the approximation in
equation (27) reveals the important property that the Rabi oscillations of the spin excitation number, in
particular, and of the degree of purity and concurrence, within the ground state evolution regime, are internal
dynamical properties of the blue-sideband transitions generated by the aJC interaction mechanism, which
we have explained in physical terms in [1].

We consider that the blue-sideband ground state excitation and qubit transitions generated by the aJC
interaction mechanism according to equation (27) may be the underlying dynamical phenomenon of ground
state excitation observed in deep strong coupling regime in the quantum Rabi model in [5] and related studies
cited therein. Here, we note that the JC interaction component does not cause ground state excitations, but
only generates free ground state evolution according to equation (25), which we have established as a general
property in resonance and off-resonance dynamics in [2].

B. Mixed state evolution regime : 0.1 <
√
n = f < 1

The mixed state evolution regime is characterized by small parameter
√
n , f values in the range 0.1 <√

n = f < 1. The mean photon number amplitude
√
n within the range 0.1 <

√
n < 1 seems to activate

all low-lying qubit states |g0⟩ , |g1⟩ , |g2⟩, in the atom-field initial state |ψgα⟩ (α ≡
√
n) in equation (4).

In this case, both JC and aJC Hamiltonians HJC , HaJC in equation (3) generate qubit state transitions
described by respective time evolving state vectors |ΨJC⟩ , |ΨaJC(t)⟩ in the general form in equations (12)
, (13), but the expansion over photon numbers n = 0, 1, 2, ..., now includes only the few active low-lying
qubit states. This explains the form of natural evolution which we have identified as a mixed state evolution
regime determined by the parameter range 0.1 <

√
n = f < 1, shown in Fig.3 in the JC model and Fig.4 in

the aJC model.
The fairly irregular natural evolution in Fig.3 shows that in the mixed state evolution regime 0.1 <√

n = f < 1 in resonant strong coupling JC model, the atomic state spontaneously evolves to a very nearly
disentangled pure state at the scaled times τp = λtp where the degree of purity (blue) very nearly reaches
the maximum value D ≈ 1, with corresponding concurrence (red) minimum value at C < 0.1.
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Figure 3: Natural evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ+σ−⟩ (YELLOW) in the resonant strong coupling JC model at k = 1 ;

√
n = f =

0.8 (within the mixed state evolution regime 0.1 <
√
n = f < 1) over scaled time τ = λt

The property that the spin excitation number < σ+σ− > (yellow) in Fig.3 evolves above the 0 value
provides direct evidence of qubit state transitions generated by the JC interaction in the mixed state evolution
regime 0.1 <

√
n = f < 1, thus confirming the activation of low-lying qubit states |g1⟩ , |g2⟩, etc, above the

ground state |g0⟩.
The fairly regular natural evolution with oscillations about the uniformly mixed state axis (green-axis)

in Fig.4 shows that in the mixed state evolution regime 0.1 <
√
n = f < 1 in resonant strong coupling

aJC model, the atomic state is fairly uniformly mixed, with concurrence (red) generally evolving above the
uniformly mixed state axis signifying a tendency of evolution towards an entangled state at scaled times
τen = λten where the concurrence evolves to a maximum value C ≈ 0.9, fairly close to the maximum value 1
for a maximally entangled state, with corresponding degree of purity (blue) minimum value at D < 0.45.
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Figure 4: Natural evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ−σ+⟩ (YELLOW) in the resonant strong coupling aJC model at k = 1 ;

√
n = f =

0.8 (within the mixed state evolution regime 0.1 <
√
n = f < 1) over scaled time τ = λt

The diminishing of the spin excitation number (yellow) undergoing slow damped evolution in Fig.4 is
possibly due to interference among transitions of the increased number of active low-lying qubit states |g0⟩
, |g1⟩ , |g2⟩, etc, within the mixed state evolution regime 0.1 <

√
n = f < 1, compared to the perfect Rabi

oscillations of the spin excitation number in the ground state evolution regime 0 <
√
n = f < 1 in Fig.2,

where only the ground state qubit |g0⟩ is active.

C. Increasing
√
n : emergence of collapses, revivals, pure and entangled state evolution

We now study the dynamics of atomic state evolution beyond natural evolution at 0 <
√
n = f < 1 in the

resonant strong coupling JC and aJC models, by increasing either of the parameters
√
n , f , while keeping

the other fixed at the specified natural evolution value. Here, the property that the resonant JC model is
completely independent of the residual detuning parameter f according to equation (23), together with the
property that f is restricted within the small value range 0 < f < 1 in the strong coupling interactions,
means that only the mean photon number amplitude

√
n remains a free parameter which can be increased

to larger values
√
n > 1. We have therefore kept f fixed within the strong coupling range 0 < f < 1, but

progressively increased
√
n to larger values to study the dynamics of the atomic state beyond the natural

evolution at 0 <
√
n = f < 1.

From the onset, we consider that, according to the definition of the photon distribution probability Pn+j ,
j = 0, 1,−1, in equation (7), increasing the mean photon number amplitude

√
n effectively increases the

probability of occupation of higher excited field mode number states |n⟩. Hence, increasing
√
n generally

increases the number of atom-field mode qubit states |gn⟩ included in the expansion of the initial state
|ψgα⟩ in equation (4). The underlying physical consequence is that the interference among the transitions
generated by the JC or aJC interaction mechanism in a superposition of an increasing number of qubit states
|gn⟩, n = 0, 1, 2, 3, ...,∞, effectively drives the system to a generally mixed state as the mean photon number
amplitude

√
n is increased to large values. The expected net effect is that increasing

√
n leads to an increase

in the concurrence which measures the mixed state or entanglement property, a corresponding decrease in the
degree of purity which measures the pure state property and a decrease or diminishing of the spin excitation
number due to the destructive interference of a large number of qubit transitions.

Indeed, we have established that, increasing the mean photon number amplitude to larger values
√
n > 1

raises the concurrence C towards its maximum value 1, but lowers both the degree of purity D and spin
excitation number ⟨σ±σ∓⟩ towards their respective minimum values 0 in both JC and aJC models. A very
important property which emerges is that,

√
n cannot be increased to arbitrarily large values, but only up

to a well defined maximum value
√
nmax = 11.2, where the atomic state evolution reaches the maximally

entangled state, which becomes clear below.
As

√
n is increased from the natural evolution values 0 <

√
n < 1, the general mixed state property

emerges prominently. Within the range of values 1 <
√
n ≤ 9.72, the degree of purity, concurrence and spin

excitation number, each develops evolution with collapses and revivals, where the maximum and minimum
values of the degree of purity or concurrence are generally below, respectively, above, the expected completely
disentangled pure state or maximally entangled state values 1 or 0. The optimal characteristic feature of
this evolution with collapses and revivals is achieved at the value

√
n = 7, plotted in Fig.5 in the JC model

and in Fig.6 in the aJC model, where the degree of purity (blue) spontaneously rises sharply to a short-lived
maximum value D ≈ 1, very very close to maximum value 1 for a completely disentangled pure state and
the corresponding concurrence (red) spontaneously falls sharply to a short-lived minimum value C ≈ 0.125,
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very close to the minimum value 0, in the middle of the first collapse period of the spin excitation number.
Note that the approximate maximum and minimum values (D ≈ 1 , C ≈ 0.125) in both JC and aJC models
must satisfy the complementarity relation in equation (17).
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Figure 5: Resonance evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ+σ−⟩ (YELLOW) in the strong coupling JC model at k = 1 ;

√
n = 7 ; 0 < f <

1 over scaled time τ = λt
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Figure 6: Resonance evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ−σ+⟩ (YELLOW) in the strong coupling aJC model at k = 1 ;

√
n = 7 ; 0 < f <

1 over scaled time τ = λt

Notice that in the evolution in both JC and aJC models in Fig.5 , Fig.6, the degree of purity (blue) and
concurrence (red) cross at points on the uniformly mixed state axis (green), thereby fulfilling the complemen-
tarity relation in equation (17), while the spin excitation number (yellow) undergoes collapses and revivals
about the 1

2 -axis, at half the maximum value 1, which we may identify as the resonance spin excitation
number collapse-axis as a reference for the evolving spin excitation number. Note that, according to the
definitions of the respective JC and aJC spin excitation numbers ⟨σ+σ−⟩ = 1

2 (1 + r3) , ⟨σ−σ+⟩ = 1
2 (1− r3)

in equation (15), the resonance spin excitation collapse axis passes through points where the respective state
population inversion vanishes as r3 = 0 , r3 = 0.

The similarity of the evolution in Fig.5 in the JC model and Fig.6 in the aJC model is due to the property
that at the larger value

√
n = 7, dynamical effects of the small aJC residual detuning parameter β = 2f in

the strong coupling range 0 < f < 1, do not change the dynamics significantly compared to the resonant
JC dynamics with vanishing detuning parameter β = 0. In particular, for photon excitation numbers n ≥ 1
arising in the superposition of qubit states |gn⟩ at large

√
n > 1, the approximation f << 1 applied within

the ground state evolution regime in equation (27), affecting only the aJC model in resonance k = 1, can be
generalized to the evolution at large

√
n > 1 to obtain the effective JC and aJC Rabi oscillation frequencies

and the related interaction parameters in equation (10), together with the respective approximate general
time evolving state vector in resonance k = 1 in the form

k = 1 ; n ≥ 0 ; j = 0, 1 ;
√
n+ j >> f

Rn+j ≈ Rn+j = λ
√
n+ j ; cn+j ≈ cn+j = 0 ; sn+j ≈ sn+j = 1

|ΨJC(t)⟩ =
∞∑

n=0

(
√
Pne

−iωnt(cos(λ
√
nt)|g⟩ − i

√
Pn+1e

−iω(n+1)t sin(λ
√
n+ 1t)|e⟩ )|n⟩
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|ΨaJC(t)⟩ ≈
∞∑

n=0

(
√
Pne

−iω(n+1)t(cos(λ
√
n+ 1t)|g⟩ − i

√
Pn−1e

−iωnt sin(λ
√
nt)|e⟩ )|n⟩ (28)

noting that in the resonance k = 1 dynamics, the JC results in equation (28) are exact, agreeing with
equation (23). Notice that the approximate form of the resonant aJC state vector |ΨaJC(t)⟩ in equation (28)
is precisely similar to the exact resonant JC state vector |ΨJC(t), the two differing only in the interchange
of field mode excitation numbers n ⇀↽ n+ 1 in the Rabi frequencies and global time evolving phase factors,
which explains the similarity in the forms of dynamical evolution in the resonant strong coupling JC and
aJC models in Fig.5 and Fig.6.

We observe that, the phenomenon in which the atomic state spontaneously evolves to an approximately
disentangled pure state signified by maximum degree of purity D ≈ 1 and minimum concurrence C ≈ 0.125
at the middle of the first collapse period of the spin excitation number (or spin population inversion) was
first determined in resonant JC model precisely in the same form at n = 49 (

√
n = 7) as in Fig.5 by Gea-

Banacloche using the atomic state purity measure Trρ̂2a in [6] and a little later by Phoenix and Knight using
the von Newman entropy as a measure of the atomic state entanglement in [9].

In this article, we continue applying the qualitative approach to determine the dynamical properties of the
atomic state evolution by keeping detuning fixed in the strong coupling range 0 < f < 1, while increasing the
mean photon number amplitude to larger values

√
n > 7. We re-emphasize that for all values

√
n ̸= 7 in the

range 1 <
√
n ̸= 7 ≤ 9.72 specified above, the evolution with collapses and revivals are similar to the optimal

evolution at
√
n = 7 in Fig.5 , Fig.6 , but the degree of purity evolves significantly below the maximum value

1, with the corresponding concurrence evolving significantly above the minimum value 0, signifying that in
these cases the atom is essentially in a mixed state. Within the range 1 <

√
n ≤ 9.2, the evolution of the spin

excitation number remains precisely the same as in the
√
n = 7 evolution in Fig.5 , Fig.6, but falls below the

resonance spin excitation number collapse axis (below 1
2 -axis) in the range 9.2 <

√
n ≤ 9.72.

We obtain interesting dynamical features of the atomic state evolution by increasing
√
n to larger values√

n > 9.72. The reverse order evolution in which the concurrence rises towards its maximum value C = 1,
while the degree of purity falls towards its minimum value D = 0 with increasing

√
n, means that at some

value
√
n > 9.72, the rising concurrence and the falling degree of purity can coincide and cross-over at

points C = D = 1√
2
on the uniformly mixed state axis. Indeed, we find that in the resonant strong coupling

0 < f < 1 dynamics, this cross-over of concurrence and degree of purity occurs at
√
n = 9.785 in the JC

model plotted in Fig.7 and at
√
n = 9.735 in the aJC model plotted in Fig.8, where the respective minimum

and maximum points of the concurrence (red) and degree of purity (blue) coincide on the uniformly mixed
state axis. We have extended the time τ -axis to show the near stability of this interesting critical evolution,
which describes the dynamics of the atom in a uniformly mixed state. As expected in a mixed state, the
spin excitation number has significantly diminished, undergoing steady evolution with collapses and revivals
about an axis at ≈ 0.35, significantly below the resonance spin excitation number collapse axis at 0.5 in Fig.5
, Fig.6.
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Figure 7: Resonance evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ+σ−⟩ (YELLOW) in the JC model at cross-over k = 1 ;

√
n = 9.785 ; 0 < f <

1 over scaled time τ = λt
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Figure 8: Resonance evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ−σ+⟩ (YELLOW) in the aJC model at cross-over k = 1 ;

√
n = 9.735 ; 0 < f <

1 over scaled time τ = λt

The interesting cross-over property of concurrence and degree of purity at large mean photon number
amplitudes

√
n = 9.785 in Fig.7 in the JC model and

√
n = 9.735 in Fig.8 in the aJC model does not have

comparison in the literature since it has never been studied in earlier works.
The concurrence continues rising as the degree of purity and spin excitation number continue falling with

increasing mean photon number amplitude up to a critical value
√
nc = 11.2 where the concurrence (red)

reaches its steady state time-independent maximum value C = 1, while the degree of purity (blue-coincides
with the time τ -axis) and spin excitation number (yellow-coincides with the time τ -axis) both reach their
respective minimum values (D = 0 , ⟨σ+σ−⟩ = 0), which we have plotted only in the JC model in Fig.9,
since the corresponding evolution at

√
nc = 11.2 in the aJC model is precisely similar. The green line is

the uniformly mixed state axis. We have extended the time τ -axis to show the strictly time-independent
evolution of the order parameters at

√
nc = 11.2.
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Figure 9: Resonance evolution of degree of atomic state purity D (BLUE-very faint at minimum value 0 along
the τ -axis), concurrence C (RED) and spin excitation number ⟨σ+σ−⟩ (YELLOW-very faint at minimum
value 0 along the τ -axis) in the JC model at k = 1 ;

√
n ≥ 11.2 ; 0 < f < 1 over scaled time τ = λt. The

corresponding evolution in the aJC model is precisely similar.

The respective steady state time-independent maximum value 1 of the concurrence and minimum value 0
of the corresponding degree of purity in Fig.9 signify the evolution of the atomic state to a stable maximally
entangled state at the critical mean photon number amplitude

√
nc = 11.2. This stable maximally entangled

state is independent of all
√
n > 11.2 and we establish below that it is completely independent of the detuning

parameters f > 0 , k > 0 in both JC and aJC models. It follows that in the resonant and off-resonant JC ,
aJC models, the mean photon number amplitude

√
n cannot be increased to arbitrarily large values, but only

up to a maximum critical value
√
nc = 11.2 where the atomic state reaches a stable maximally entangled

state. This qualitative maximally entangled state evolution at
√
n ≥ 11.2 means that the mathematical

disentangling of the atomic and field mode states at large mean photon number n → ∞ in the JC model
in [6 , 7] may need an alternative physical interpretation different from the pure state separability assumed
therein. According to the evolution obtained within the range 1 <

√
n < 9.72 in resonant JC model in

the present work, the pure state separability approximation in [6 , 7 , 8 , 10 , 11] may be limited to the
range of values 1 <

√
n ≤ 9.3, meaning very large mean photon numbers only up to a maximum value

nmax = (9.3)2, noting that at
√
n = 9.3, the degree of purity rises spontaneously to a short-lived maximum

value D(
√
n = 9.3) ≈ 0.9, significantly below the completely disentangled pure state maximum degree of

purity D = 1. As explained above, at values
√
n > 9.3, the atomic state evolution in resonant JC model

is essentially in a mixed state, such that a mathematical pure state disentanglement at
√
n > 9.3 is a bad
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approximation.
We observe that, in resonant strong coupling, 0 < f < 1, JC and aJC interaction, the atomic state

generally evolves asymptotically from the mixed state at 1 <
√
n ≤ 9.72 into a stable maximally entan-

gled state, signified by the concurrence (red) growing asymptotically to the steady state time-independent
maximum value 1 and the corresponding degree of purity (blue) decaying asymptotically to the steady state
time-independent minimum value 0, over a fairly long interaction time, which we have demonstrated at√
n = 7 only in the JC model in Fig.10, here again noting that the corresponding evolution at

√
n = 7 in the

aJC model is precisely similar. Notice that the collapse and revival evolution of the spin excitation number
(yellow) remains stable, neither growing nor decaying, but develops fairly chaotic oscillations over the long
interaction time.
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Figure 10: Resonance evolution of degree of atomic state purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ+σ−⟩ (YELLOW) in the strong coupling JC model at k = 1 ; α = 7 ; 0 < f <
1 over scaled time τ = λt. The corresponding evolution in the aJC model is precisely similar.

Up to this stage, the picture which has emerged is that, except within the ground state evolution regime
0 <

√
n = f ≤ 0.1 where the JC interaction generates only plane wave evolution of the ground state

|g0⟩ without spin excitations, while the aJC interaction generates blue-sideband transitions characterized
by perfect Rabi oscillations between the lowest-lying qubit states |g0⟩ and |e1⟩, the dynamical evolution
in resonant strong coupling, 0 < f < 1, JC and aJC models takes similar form, differing only in the red-
sideband transitions in the JC interaction mechanism and the blue-sideband transitions in the aJC interaction
mechanism. We have established in equations (27) and (28) that the similarities are due to the approximations
f << 1, generally f <<

√
n+ 1, n = 0, 1, 2, ..., which effectively eliminate the residual detuning of the aJC

interaction, leading to general time evolving state vectors of similar form in resonance k = 1 strong coupling
JC and aJC models. We now proceed to the case of resonant weak coupling interaction, characterized by
large residual detuning parameter f > 1, where the approximations in equations (27) , (28) do not apply.

3.2.2 Atomic state evolution in the resonant weak coupling interaction : k = 1 ; f > 1

As defined above, the weak coupling interaction is characterized by the residual detuning parameter f in the
range f > 1, meaning 1 < f <∞. In the resonant weak coupling JC and aJC models, the natural evolution
property of the atomic state in equation (21′) is set by

k = 1 ; ϵ = 1 ;
√
n = f > 1

JC : Rn+j = λ
√
n+ j ; cn+j = 0 ; sn+j = 1

aJC : Rn+j = λ
√
n+ j + n ; cn+j =

√
n√

n+ j + n
; sn+j =

√
n+ j√

n+ j + n
; j = 0, 1 (29)

which differs from the strong coupling natural evolution property in equation (24) only in the condition that
the mean photon number amplitude now takes large values

√
n > 1. The procedure for determining the

degree of purity, concurrence and spin excitation number in natural evolution remains the same as explained
in the strong coupling case above.

We begin by recalling the well established property that, in resonance k = 1 dynamics, the JC interaction
is completely independent of the residual detuning parameter f and is controlled only by the mean photon
number amplitude

√
n, which can be increased only up to the maximum value

√
nmax = 11.2, where the

atom reaches a stable maximally entangled state. This means that in resonant k = 1 weak coupling, f > 1,
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interaction, the residual detuning parameter is the only free parameter which can be increased to even very
large values f >> 1 to study the evolution of the atomic state from the uniformly mixed state in natural
evolution at

√
n = f > 1. Being completely independent of the detuning parameter f , the atomic state

evolution in the resonant weak coupling JC model remains exactly the same as in all the cases presented
in the strong coupling 0 < f < 1 interaction in Fig.5-Fig.10 where the

√
n values are within the natural

evolution range
√
n = f > 1 in the weak coupling interaction. It follows that, in resonant k = 1 weak

coupling interaction, increasing the detuning parameter f to larger values affects only aJC dynamics, where
the atomic state evolution from the uniformly mixed state develops interesting physical features. Hence, for
all the possible

√
n values in the weak coupling natural evolution range 1 <

√
n = f < 11.2, it is sufficient to

present only the resonant aJC results explicitly, but note the corresponding resonant weak JC results similar
to the results obtained earlier in Fig.5-Fig.10 in the resonant strong coupling interaction.

We have plotted natural evolution of the degree of purity D, concurrence C and spin excitation number
⟨σ−σ+ > determined at 1 <

√
n = f < 11.2 in resonant weak coupling aJC model. We have established that

natural evolution in the resonant weak coupling aJC model is composed of four distinct dynamical regimes:
reversible mixed state evolution regime in the parameter range 1 <

√
n = f ≤ 9.2, irreversible mixed state

evolution regime in the parameter range 9.2 <
√
n = f < 9.57, reversible entangled state evolution regime

in the parameter range 9.57 ≤
√
n = f < 9.755 and an irreversible entangled state evolution regime in the

parameter range 9.755 ≤
√
n = f < 11.2. The maximally entangled state evolution regime, completely

independent of the detuning parameters f > 0 , k > 0, occurs at
√
n ≤ 11.2.

A. Mixed state evolution regime : 1 <
√
n = f < 9.57

In general, natural evolution identified as a mixed state evolution regime within the parameter range 1 <√
n = f < 9.57 is composed of stable symmetrical, very nearly periodic, collapses and revivals of slowly

decaying degree of purity D (blue) and spin excitation number (yellow), above or about, and slowly growing
concurrence (red), below or about, the uniformly mixed state axis, with the degree of purity, concurrence and
spin excitation number oscillation cluster revival turning points, all coinciding exactly on the axis at points
where D = ⟨σ−σ+⟩ = C = 1√

2
, as shown in the examples at

√
n = f = 7 in Fig.11, at

√
n = f = 9.2 in Fig.12

and at
√
n = f = 9.4 in Fig.13, in the resonant weak coupling aJC model. Note that the corresponding

natural evolution at
√
n = f = 7 , 9.2 , 9.4 in the resonant weak coupling JC model, completely independent

of f , are precisely similar to the evolution in Fig.5 or Fig.10, determined only by
√
n = 7 , 9.2 , 9.4.
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Figure 11: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = f = 7 over scaled time

τ = λt

20



0 50 100 150 200 250 300 350
Τ

0.2

0.4

0.6

0.8

1.0

aJC-STATEQUANTIFIERS

Figure 12: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = f = 9.2 over scaled time

τ = λt
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Figure 13: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = f = 9.4 over scaled time

τ = λt

In Fig.11 at
√
n = f = 7 and Fig.12 at

√
n = f = 9.2, the gentle rise of the asymptotically decaying degree

of purity (blue) to a fairly broad maximum value above the uniformly mixed state axis, but significantly lower
than the disentangled pure state maximum value 1, and the corresponding gentle fall of the asymptotically
growing concurrence (red) to a minimum value below the axis, but significantly higher than the disentangled
pure state minimum value 0, signifies the property that in the resonant weak coupling aJC model, the natural
evolution of the atomic state is a fairly stable uniformly mixed state. In Fig.13 at

√
n = 9.4, the fairly stable

uniformly mixed state evolution is signified by symmetrical, essentially stable periodic oscillations of the
degree of purity (blue) and the concurrence (red) about the uniformly mixed state axis (green) where the
oscillations cross. Natural evolution in the mixed state regime is composed of a reversible mixed state regime
defined within the parameter range 1 <

√
n = f ≤ 8.55 and an irreversible mixed state regime defined within

the parameter range 8.55 <
√
n = f < 9.57.

AI. Reversible mixed state evolution regime : 1 <
√
n = f ≤ 8.55

A reversible mixed state evolution regime, determined by the parameter range 1 <
√
n = f ≤ 8.55, is

characterized by the property that the atomic state can evolve spontaneously from the uniformly mixed state
in natural evolution at

√
n = f into a very nearly disentangled pure state in the JC model, and in resonant

strong coupling 0 < f < 1 aJC model, such as in Fig.5 , Fig.6, while, strictly in resonant weak coupling f > 1
aJC model, a reversible mixed state evolution regime 1 <

√
n = f ≤ 8.55 is characterized by the property

that the atomic state does not evolve spontaneously, but can be driven from the uniformly mixed state in
natural evolution at

√
n = f into a steady state completely disentangled pure state by increasing the residual

detuning parameter f up to some larger critical value fc = ϵc
√
n >> 1, ϵc >> 1.

The example of natural evolution at
√
n = f = 7, plotted in Fig.11, is within the reversible mixed state

evolution regime 1 <
√
n = f ≤ 8.55. The revival oscillation clusters of the spin excitation number and the

revival turning points of the degree of purity and concurrence all coincide on the uniformly mixed state axis
at points where D = C = ⟨σ−σ+⟩ = 1√

2
.

We now consider the important characteristic property that within the reversible mixed state evolution
regime, 1 <

√
n = f ≤ 8.55 in the resonant weak coupling aJC model, the atomic state can be driven

from the uniformly mixed state in natural evolution at 1 <
√
n = f ≤ 8.55 to a steady state completely
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disentangled pure state by keeping the mean photon number amplitude
√
n at the natural evolution value,

but increasing the residual detuning parameter f to large critical values fc where the degree of purity reaches
the steady state time-independent maximum value D = 1, and the corresponding concurrence reaches the
steady state time-independent minimum value C = 0. Increasing f to larger values progressively raises both
degree of purity and spin excitation number towards the steady state time-independent maximum value 1,
but progressively lowers the concurrence towards the steady state time-independent minimum value 0. Note
that in studying the dynamics beyond natural evolution, the mean photon number amplitude

√
n is kept fixed

at its natural evolution value, while increasing the residual detuning parameter using the general parameter
unification relation f = ϵ

√
n in equation (19) for

√
n > 1 , ϵ > 1.

In the example of natural evolution at
√
n = f = 7 in Fig.11, increasing the residual detuning parameter

f to larger values f > 7 drives the coincident degree of purity (blue) and spin excitation number (yellow) to
their steady state time-independent maximum values D = ⟨σ−σ+⟩ = 1 and the corresponding concurrence
(red) to its steady state time-independent minimum value C = 0, at a critical value fc = ϵc × 7 = 100 × 7,
i.e., ϵc = 100, as shown in Fig.14, where the blue and yellow of the degree of purity and spin excitation
number coincide on the maximum value 1-axis at the top, while the red of the concurrence at minimum
value 0 coincides with the time τ -axis. The steady state time-independent maximum and minimum values
of the degree of purity and concurrence (D = 1 , C = 0) in Fig.14 signify the property that, on increasing
the residual detuning parameter to a critical value fc = 100 × 7, the atomic state evolves from a uniformly
mixed state at

√
n = f = 7 to a completely disentangled pure state at

√
n = 7 , f ≥ 100× 7.
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Figure 14: Evolution of the degree of purity D, coinciding with the spin excitation number ⟨σ−σ+⟩
(BLUE+YELLOW) at maximum value 1 and the concurrence C (RED) at minimum value 0, coinciding
with the time τ -axis, at k = 1 ;

√
n = 7 ; f ≥ 100× 7 in resonant weak coupling aJC model over scaled time

τ = λt

Hence, using the example of natural evolution at
√
n = 7 in (Fig.11 , Fig.14), we have established the

characteristic property that within the reversible mixed state regime 1 <
√
n = f ≤ 8.55 in resonant weak

coupling aJC dynamics, the atomic state can be driven from the uniformly mixed state into a completely
disentangled pure state by increasing the residual detuning parameter to larger critical values fc = ϵc

√
n,√

n > 1 , ϵ2c >> 1.
To determine the form of the completely disentangled pure state arising within the reversible mixed

state regime 1 <
√
n = f ≤ 8.55 in the resonant weak coupling aJC dynamics at very large residual detuning

parameter f >> 1 (ϵ >> 1), we assume that for mean photon number amplitude in the range 1 <
√
n ≤ 8.55,

the field mode excitation number n in the qubits |gn⟩ included in the superposition of the atom-field initial
state |ψgα⟩ in equation (4) and the general time evolving state vectors in equations (5) , (6), is very small
compared to f2 → ∞. Hence, the atomic state evolution at very large values f >> 1 in the resonant weak
coupling aJC dynamics is determined by applying the approximation f >>

√
n+ j, j = 0, 1 in the Rabi

frequency and related parameters Rn+j , cn+j , sn+j in equation (10), which, substituted into the time
evolving state vector |ΨaJC(t) in equation (6), yields a completely disentangled pure state vector in the form

k = 1 ; 1 < α =
√
n ≤ 8.55 ; ϵc ≥ 55 ; f = fc = ϵc

√
n >>

√
n+ j ; j = 0, 1

ϵ >> 1 ; Rn+j = λ
√
n+ j + ϵ2n ≈ λϵ

√
n ; cn+j ≈ 1 ; sn+j ≈ 0

|ΨaJC(t)⟩ ≈ eiλϵ
√
nt|g⟩

∞∑
n=0

√
Pn e

−iω(n+1)t|n⟩ (30)

where ϵc = 55 is the minimum critical value for driving natural evolution at
√
n = f = 8.55 to steady state

time-independent evolution at
√
n = 8.55 , f = 55× 8.55.
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The large residual detuning parameter approximation f >>
√
n+ j, j = 0, 1, in equation (30) reveals

that the general time evolving state vector |ΨaJC(t)⟩ which describes the steady state time-independent
evolution in Fig.14 at

√
n = 7 , f ≥ 100 × 7, after driving the dynamics from the reversible mixed state

evolution regime 1 <
√
n = f ≤ 8.55 by increasing f = ϵ

√
n in resonant weak coupling aJC model, is a

completely disentangled pure state obtained as a separable product of a free time evolving atomic ground

state eiλϵ
√
n t|g⟩ and a plane wave field mode coherent state

∑∞
n=0

√
Pn e−iωnt|n⟩, where

√
Pn is defined

according to equation (7). It is easy to establish that in the completely disentangled pure state |ΨaJC(t)⟩
in equation (30), the degree of purity, spin excitation number and concurrence are at their respective steady
state time-independent maximum and minimum values D = ⟨σ−σ+⟩ = 1 , C = 0, in agreement with the
exact pure state evolution in Fig.14.

We emphasize that the evolution in the Fig.14 at
√
n = 7 , f ≥ 100× 7 example signifies a steady state

time-independent dynamics described by the completely disentangled pure state |ΨaJC(t)⟩, where the atom
and field mode revert to their initial ground and coherent states, each picking up global time evolving factors.
This steady state time-independent evolution at large residual detuning parameter f >> 1 is achievable
only in the resonant weak coupling aJC model, but cannot be reached in the resonant JC model, which is
completely independent of f . Within the same range of values 1 <

√
n ≤ 8.55, the resonant JC dynamics

is restricted to the spontaneous evolution to a short-lived very nearly pure state in the Fig.5 at
√
n = 7

example, which is described by the general time evolving resonant JC state vector |ΨJC(t)⟩ in equation (28).
For completeness and ease of comparison of the completely disentangled pure state arising at 1 <

√
n ≤

8.55 , f >> 1 in the resonant weak coupling aJC model and the approximations assuming very large mean
photon number amplitude

√
n → ∞, in resonant JC model in [6 , 7 , 8 , 10 , 11], we generalize the initial

atomic state to a superposition of the ground and excited states η|e⟩ + ξ|g⟩, so that the atom-field mode
initial state |ψgα⟩ in equation (4) generalizes to the form

|ψegα⟩ =
∞∑

n=0

e−
1
2α

2

αn

√
n!

(η|e⟩+ ξ|gn⟩) ; |η|2 + |ξ|2 = 1 (31)

The respective general time evolving state vectors |ΨJC(t)⟩ , |ΨaJC(t)⟩ generated by the JC and aJC Hamil-
tonians HJC , HaJC in equation (3) are obtained in the form [2 , 14]

JC : |ΨJC(t)⟩ = η|Ψeα
JC(t)⟩+ ξ|Ψgα

JC(t)⟩

|Ψeα
JC(t)⟩ =

∞∑
n=0

(
√
Pne

−iω(n+ 1
2 )t(cos(Ren+1t)−icen+1 sin(Ren+1t))|e⟩−i

√
Pn−1e

−iω(n− 1
2 )tsen sin(Rent)|g⟩ )|n⟩

|Ψgα
JC(t)⟩ =

∞∑
n=0

(
√
Pne

−iω(n− 1
2 )t(cos(Rgnt)+icgn sin(Rgnt))|g⟩−i

√
Pn+1e

−iω(n+ 1
2 )tsgn+1 sin(Rgn+1t)|e⟩ )|n⟩

(32)

aJC : |ΨaJC(t)⟩ = η|Ψeα
aJC(t)⟩+ ξ|Ψgα

aJC(t)⟩

|Ψeα
aJC(t)⟩ =

∞∑
n=0

(
√
Pne

−iω(n+ 1
2 )t(cos(Rent)−icen sin(Rent))|e⟩−i

√
Pn+1e

−iω(n+ 3
2 )tsen+1 sin(Ren+1t)|g⟩ )|n⟩

|Ψgα
aJC(t)⟩ =

∞∑
n=0

(
√
Pne

−iω(n+ 3
2 )t(cos(Rgn+1t)+icgn+1 sin(Rgn+1t))|g⟩−i

√
Pn−1e

−iω(n+ 1
2 )tsgn sin(Rgnt)|e⟩ )|n⟩

(33)
where, in equations (32) , (33), the Rabi frequencies and related parameters (R, c, s) , (R, c, s), with indices
en+ j , gn+ j , j = 0, 1, now specified by excited and ground state symbols e , g, are defined as in equations
(5) , (6) , (10) as appropriate.

As usual, under resonance k = 1, the JC general time evolving state vector |ΨJC(t)⟩ in equation (32) is
completely independent of the residual detuning parameter f , thus not affected by the f >> 1 approximation
in equation (30). On the other hand, the aJC general time evolving state vector |ΨaJC(t)⟩ in equation (33)
is intrinsically dependent on the residual detuning parameter f , and for resonance k = 1 evolution at mean
photon number amplitude in the range 1 <

√
n ≤ 8.55, applying the f >> 1 approximation in equation (30)

to equation (33) yields the expected completely disentangled pure state in the form

1 <
√
n ≤ 8.55 ; f = fc = ϵc

√
n ; ϵc ≥ 55
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ϵ >> 1 : |ΨaJC(t)⟩ ≈
(
ηe−i 1

2ωte−iλϵ
√
nt|e⟩+ ξe−i 3

2ωteiλϵ
√
nt|g⟩

) ∞∑
n=0

√
Pn e

−iωnt|n⟩ (34)

Here again, the large f = ϵ
√
n >>

√
n+ j, j = 0, 1, approximate state vector |ΨaJC(t)⟩ in equation (34)

reveals the physical property that, in the steady state time-independent evolution in resonant weak coupling
aJC model, the atom and field mode both revert to their respective initial coherent states after picking up
time evolving phase factors.

We observe that, the physical property of a completely disentangled pure state describing steady state
time-independent evolution in resonant weak coupling aJC model is entirely different from the physical
interpretation of the spontaneous evolution to a short-lived very nearly pure state in the corresponding
resonant JC model given in [7 , 8 , 10]. Specifically, in [7 , 8] and related studies thereafter, it is assumed that
in the very large n → ∞ limit, the general time evolving JC state vector |ΨJC(t)⟩ in equation (28), which
describes the evolution in Fig.5 at

√
n = 7 in the resonant JC model, can be reduced to an approximately

disentangled pure state composed of coherent atomic and field mode states similar to the form in equation
(34). It is evident in Fig.7 at

√
n = 9.785 and Fig.9 at

√
n ≥ 11.2 where the atomic state evolution is already

in the entangled state regime in the resonant JC model, that the n → ∞ approximation in [7 , 8] needs a
redefinition of the physical interpretation of the pure state disentanglement.

In an interesting related study of atomic state coherence in resonant JC model in [11], Goldberg and
Steinberg imposed a recursion relation to derive a disentangled pure state expressed as a separable product
of atomic and field mode coherent states, thereby interpreting the field mode state as a transcoherent state.
The recursion relation in [11] is easily achieved by setting equal the coefficients of the atomic ground and
excited state vectors |g⟩ , |e⟩ in |ΨJC(t)⟩ , |ΨaJC(t)⟩ in equation (28), giving (ignoring normalization factors)

JC√
Pne

iωt cos(λ
√
nt) = −i

√
Pn+1 sin(λ

√
n+ 1t) ; |ΨJC(t)⟩ → (|g⟩+ |e⟩)

∞∑
n=0

√
Pne

−iωnt cos(λ
√
nt)|n⟩

aJC√
Pne

−iωt cos(λ
√
n+ 1t) = −i

√
Pn−1 sin(λ

√
nt) ; |ΨaJC(t)⟩ → (|g⟩+|e⟩)

∞∑
n=0

√
Pne

−iωnt cos(λ
√
n+ 1t)|n⟩

(35)
We observe that the recursion relation imposed in [11], and obtained here in equation (35), does not follow
from any physical conditions, but is applied as a purely mathematically effective condition for generating a
disentangled pure state with a coherent atomic state. In [11], the authors have elaborated how the recursion
relation can be used to determine experimentally realizable forms of the JC disentangled pure state in
equation (35). In the present study, we have not considered a physical condition for disentangling |ΨJC(t)⟩
in equation (28) in the separable pure state form in equation (35).

AII. Irreversible mixed state evolution regime : 8.55 <
√
n = f < 9.57

An irreversible mixed state evolution regime, determined by the fairly narrow parameter range 8.55 <
√
n =

f < 9.57, is characterized by the property that the atomic state cannot evolve spontaneously and cannot
be driven, from the uniformly mixed state in natural evolution at f =

√
n into a very nearly or completely,

disentangled pure state, but remains in a mixed state even on increasing the residual detuning parameter f
to very very large values f → ∞. In this regime, for all large f → ∞, the time-independent maximum value
of the coinciding degree of purity and spin excitation number remain above the uniformly mixed state axis,
but significantly below the completely disentangled pure state value 1 in the range 1√

2
< D = ⟨σ−σ+⟩ < 0.98,

while the corresponding time-independent minimum value of the concurrence remains below the uniformly
mixed state axis, but significantly above the completely disentangled pure state value 0 in the range 0.05 <
C < 1√

2
, signifying that the atom is generally in a mixed state.

The examples of natural evolution at
√
n = f = 9.2 , 9.4, plotted in Fig.12 , Fig.13, respectively, are

within the irreversible mixed state evolution regime 8.55 <
√
n = f < 9.57, in the resonant weak coupling

aJC model, noting that the corresponding evolution at
√
n = f = 9.2 , 9.4 in the resonant weak coupling JC

model is similar to the evolution in Fig.5 at
√
n = 7 or Fig.10 over long interaction time, in resonant strong

coupling 0 < f < 1 JC model.
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We note that, for parameter values up to
√
n = f = 9, natural evolution within the irreversible mixed

state regime 8.55 <
√
n = f < 9.57 takes precisely the form of natural evolution at

√
n = f = 7 in

Fig.11, and then, in the range of parameter values 9 <
√
n = f < 9.57, the natural evolution advances

into essentially periodic oscillations of the degree of purity and concurrence about or very nearly on, the
uniformly mixed state axis, as in the examples at

√
n = f = 9.2 in Fig.12 and at

√
n = f = 9.4 in

Fig.13. Notice that at
√
n = f = 9.2, Fig.12 reveals a spectacular dynamical feature that, the collapse-axis

(yellow) of the spin excitation number coincides with the uniformly mixed state axis (green). This is an
interesting phenomenon in natural evolution within the range of parameter values 9 <

√
n = f < 9.57,

defining dynamics at the boundary of the irreversible mixed state evolution regime and the entangled state
regime 9.57 ≤

√
n = f < 11.2 described below.

In natural evolution at
√
n = f = 9.2 in Fig.12, keeping the mean photon number amplitude at the natural

evolution value
√
n = 9.2, but increasing the residual detuning parameter to larger values f > 9.2 drives the

coincident degree of purity (blue) and spin excitation number (yellow) to their steady state time-independent
maximum values D = ⟨σ−σ+⟩ = 0.95, significantly lower than the disentangled pure state value 1, and the
corresponding concurrence (red), to its steady state time-independent minimum value C = 0.3, significantly
higher than the disentangled pure state value 0, at a critical value fc = 18× 9.2 (meaning ϵc = 18), as shown
in Fig.15, signifying the atomic state evolution from a uniformly mixed state at

√
n = f = 9.2 to a stable

mixed state describing steady state time-independent evolution at
√
n = 9.2 , f ≥ 18× 9.2.
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Figure 15: Evolution of the degree of purity D, coinciding with the spin excitation number ⟨σ−σ+⟩
(BLUE+YELLOW), at maximum value 0.95 and the concurrence C (RED) at minimum value 0.3, at
k = 1 ;

√
n = 9.2 ; f ≥ 18× 9.2 in resonant weak coupling aJC model over scaled time τ = λt

Similarly, in natural evolution at
√
n = f = 9.4, keeping

√
n = 9.4, but increasing the residual detuning

parameter to larger values f > 9.4 drives the coincident degree of purity (blue) and spin excitation number
(yellow) to their steady state time-independent maximum values D = ⟨σ−σ+⟩ = 0.9, significantly lower
than the disentangled pure state value 1, and the corresponding concurrence (red) to its steady state time-
independent minimum value C ≈ 0.44, significantly higher than the disentangled pure state value 0, at a
critical value fc = 12×9.4, signifying the atomic state evolution from a uniformly mixed state at

√
n = f = 9.4

to a stable mixed state describing steady state time-independent evolution at
√
n = 9.4 , f ≥ 12× 9.4. The

mixed state evolution at
√
n = 9.4 , f ≥ 12 × 9.4 is similar to the mixed state evolution at

√
n = 9.2 ,

f ≥ 18× 9.2 in Fig.15, thus not very necessary to present.
The examples of natural evolution at

√
n = f = 9.2 , 9.4 in Fig.12 , Fig.13, developing into general stable

mixed state evolution on increasing the residual detuning parameter to very large values f ≥ 18×9.2 , 12×9.4,
respectively, taking similar form as in Fig.15, signify that, within the irreversible mixed state regime 8.55 <√
n = f < 9.57, the atomic state cannot evolve spontaneously, and cannot be driven, to a disentangled pure

state, but remains a mixed state. This is the characteristic dynamical feature of the irreversible mixed state
evolution regime.

Increasing the natural evolution parameter
√
n = f to larger values

√
n = f ≥ 9.57 drives the atomic

state evolution into a regime where the concurrence is generally higher than the degree of purity, which we
identify as an entangled state regime, defined within the parameter range 9.57 ≤

√
n = f < 11.2, which we

now describe.

B. Entangled state evolution regime : 9.57 ≤
√
n = f < 11.2

Natural evolution identified as an entangled state evolution regime within the parameter range 9.57 ≤
√
n =

f < 11.2 is composed of a higher fairly stable concurrence evolving periodically on or above the uniformly
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mixed state axis and lower fairly stable degree of purity and spin excitation number evolving periodically
on or below the uniformly mixed state axis, as shown in the examples at

√
n = f = 9.57 in Fig.16 and√

n = f = 9.735 in Fig.17 in the resonant weak coupling aJC model. Notice that natural evolution at√
n = f = 9.57 in Fig.16 is essentially similar to the evolution in Fig.7 at

√
n = 9.785 and Fig.8 at√

n = 9.735 in resonant strong coupling (0 < f < 1) JC and aJC models.
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Figure 16: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = f = 9.57 over scaled

time τ = λt
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Figure 17: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = f = 9.735 over scaled

time τ = λt

Natural evolution in the entangled state regime is composed of a reversible entangled state regime defined
within the parameter range 9.57 ≤

√
n = f < 9.755 and an irreversible entangled state regime defined within

the parameter range 9.755 ≤
√
n = f < 11.2.

BI. Reversible entangled state evolution regime : 9.57 ≤
√
n = f < 9.755

A reversible entangled state evolution regime is described by natural evolution at
√
n = f within the pa-

rameter range 9.57 ≤
√
n = f < 9.755. The defining dynamical property of the reversible entangled state

evolution regime is that increasing the residual detuning parameter f to larger values lowers the concurrence
from above to below, while raising the coinciding degree of purity and spin excitation number from below to
above, the uniformly mixed state axis, thus driving the atomic state to a stable mixed state. Keeping

√
n at

the natural evolution value, but increasing f reveals that the reversible entangled state evolution regime is
characterized by two important dynamical properties (i) the degree of purity, concurrence and spin excitation
number all coincide and evolve periodically on the uniformly mixed state axis (ii) the atomic state cannot
develop spontaneously or be driven, into a nearly or completely disentangled pure state, but can only reach
an irreversible mixed state signified by coinciding degree of purity and spin excitation number steady state
time-independent maximum value 1√

2
< D = ⟨σ−σ+⟩ ≤ 0.82, above the uniformly mixed state axis, and

concurrence steady state time-independent minimum value 0.57 ≤ C < 1√
2
, below the uniformly mixed state

axis. The examples of natural evolution at
√
n = f = 9.57 in Fig.16 and

√
n = f = 9.735 in Fig.17 are within

the reversible entangled state evolution regime 9.57 ≤
√
n = f < 9.755.

In the natural evolution at
√
n = f = 9.57 in Fig.16 and at

√
n = f = 9.735 in Fig.17, keeping the mean

photon number amplitude at the respective natural evolution values
√
n = 9.57 , 9.735, but increasing the

residual detuning parameter f = ϵ
√
n to respective larger values f > 9.57 , f > 9.735 (ϵ >> 1), generates
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evolution characterized by the degree of purity, concurrence and spin excitation number all nearly or exactly
coinciding and evolving periodically on the uniformly mixed state axis at

√
n = 9.57 , f = 3

2 × 9.57 in Fig.18

and
√
n = 9.735 , f = 4× 9.735 in Fig.19, respectively.
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Figure 18: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = 9.57 , f = 3

2 × 9.57 over
scaled time τ = λt
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Figure 19: Natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation
number ⟨σ−σ+⟩ (YELLOW) in resonant weak coupling aJC model at k = 1 ;

√
n = 9.735 , f = 4 × 9.735

over scaled time τ = λt

Increasing f further to larger values f ≥ 18 × 9.57, the natural evolution at
√
n = f = 9.57 in Fig.16

develops into an irreversible mixed state signified by coinciding degree of purity and spin excitation number
steady state time-independent maximum value at D = ⟨σ−σ+⟩ = 0.82 and the concurrence steady state
time-independent minimum value at C = 0.57. Similarly, increasing f further to larger values f ≥ 18×9.735,
the natural evolution at

√
n = f = 9.735 in Fig.17 develops into an irreversible mixed state signified by

coinciding degree of purity and spin excitation number steady state time-independent maximum value at
D = ⟨σ−σ+⟩ ≈ 0.725 and concurrence steady state time-independent minimum value at C ≈ 0.69. Except
for their lower maximum and higher minimum values, the evolution at

√
n = 9.57 , f ≥ 18 × 9.57 and at√

n = 9.735 , f ≥ 18×9.735 are both precisely similar to the corresponding irreversible mixed state evolution
at

√
n = 9.2, f ≥ 18× 9.2 in Fig.15.

BII. Irreversible entangled state evolution regime : 9.755 ≤
√
n = f < 11.2

An irreversible entangled state evolution regime is described by natural evolution at
√
n = f within the

parameter range 9.755 ≤
√
n = f < 11.2, in the general form in Fig.17, where the concurrence (red) evolves

significantly above, while the coinciding degree of purity (blue) and spin excitation number (yellow) evolve
below, the uniformly mixed state axis (green). The irreversible entangled state regime is characterized by two
important dynamical properties (i) in the natural and driven evolution, the concurrence cannot fall below, and,
similarly, the coinciding degree of purity and spin excitation number cannot rise above, the uniformly mixed
state axis (ii) the atomic state cannot develop spontaneously or by driving, into a completely disentangled
pure state, nor into a basic reversible or irreversible mixed state, but remains in an irreversible entangled state,
where, even after increasing the residual detuning parameter f to very large values f → ∞, the steady state
time-independent minimum value of the concurrence remains in the higher range 1√

2
≤ C < 1, on or above,

the uniformly mixed state axis and the steady state time-independent maximum value of the corresponding
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coinciding degree of purity and spin excitation number remains in the lower range 0 < D = ⟨σ−σ+⟩ ≤ 1√
2
,

on or below, the uniformly mixed state axis.
As examples, natural evolution at

√
n = f = 9.755 and

√
n = f = 10 takes the form in Fig.17 at√

n = f = 9.735, where the concurrence (red) is generally higher, evolving above, while the coinciding degree
of purity (blue) and spin excitation number (yellow) are generally lower, evolving below, the uniformly mixed
state axis.

In natural evolution at
√
n = f = 9.755, at the boundary into the irreversible entangled state regime

9.755 ≤
√
n = f < 11.2, keeping

√
n = 9.755, but increasing f to very large values f ≥ 18 × 9.755, drives

the atomic state into the critical irreversible entangled state where the minimum concurrence and maximum
degree of purity and spin excitation number all coincide and remain steady state time-independent at C =
D = ⟨σ−σ+⟩ = 1√

2
on the uniformly mixed state axis, as shown in Fig.20 at

√
n = 9.755 , f ≥ 18× 9.755.
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Figure 20: Evolution of the degree of purity D (BLUE), concurrence C (RED) and spin excitation number
⟨σ−σ+⟩ (YELLOW) all coinciding on the uniformly mixed state axis (with equal time-independent value
D = ⟨σ−σ+⟩ = C = 1√

2
) at k = 1 ;

√
n = 9.755 ; f ≥ 18× 9.755 in resonant weak coupling aJC model over

scaled time τ = λt

In natural evolution at
√
n = f = 10, right into the irreversible entangled state regime, keeping

√
n = 10,

but increasing f to very large values f ≥ 11 × 10, drives the atomic state into an irreversible entangled
state where the steady state time-independent minimum concurrence (red) is at C ≈ 0.85 and steady state
time-independent maximum value of the coinciding degree of purity and spin excitation number is at D =
⟨σ−σ+⟩ ≈ 0.525, as shown in Fig.21 at

√
n = 10 , f ≥ 11× 10.
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Figure 21: Evolution of the degree of purity D (BLUE) coinciding with spin excitation number ⟨σ−σ+⟩
(YELLOW) at 0.525 and concurrence C (RED) at 0.85 at k = 1 ;

√
n = 10 ; f ≥ 11× 10 in resonant weak

coupling aJC model over scaled time τ = λt

C. Maximally entangled state evolution regime :
√
n ≥ 11.2

Finally, we have established that, at
√
n ≥ 11.2, the atomic state enters a maximally entangled state for

all f > 0. This maximally entangled state at
√
n ≥ 11.2 was first determined and presented in Fig.9 in

the strong coupling 0 < f < 1 interaction, but remains valid for all f → ∞ in the weak coupling f > 1
interaction, meaning that the maximally entangled state at

√
n ≥ 11.2 is completely independent of the

residual detuning parameter f > 0. It follows that in the JC and aJC models,
√
nc = 11.2 is the maximum

achievable critical mean photon number amplitude at which the atomic state evolution enters a maximally
entangled state completely independent of all

√
n > 11.2 and residual detuning parameter f > 0, as in Fig.9.
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In this respect, the general time evolving maximally entangled state vector in resonant JC and aJC models
is obtained by setting k = 1,

√
n = 11.2 and dropping all terms proportional to f in the Rabi frequencies

and related parameters in equations (5) , (6) , (10). The maximally entangled state vectors then take the
form |ΨJC(t)⟩ , |ΨaJC(t)⟩ in equation (28) at

√
n = 11.2.

Having captured the main physical features of resonance k = 1 dynamics in the JC and aJC models, we
now generalize the description to off-resonance k ̸= 1 in the next subsection.

3.3 Off-resonance k ̸= 1 dynamics

According to the unified definitions of detuning parameters β = (k − 1)f , β = (k + 1)f in equation
(8), off-resonance dynamics property k ̸= 1 now means that both JC and aJC interaction mechanisms are
determined by the residual detuning parameter f > 0. In contrast to the resonance dynamics where fixing
k = 1 leaves the mean photon number amplitude

√
n and the residual detuning parameter f as the only

variable physical parameters, off-resonance dynamics condition k ̸= 1 now means that the atom-field mode
frequency detuning parameter k also becomes a variable parameter for determining characteristic features of
the atom-field interaction. This challenge of the number of variable physical parameters has been addressed
by introducing the natural evolution property in which the mean photon number amplitude

√
n, the residual

detuning parameter f and the atom-field mode frequency detuning parameter k have been unified in simple
relations in resonance k = 1 and off-resonance k ̸= 1 interaction in equations (19) , (21) , (22). In resonance
dynamics, the natural evolution property f =

√
n separately uses

√
n as the only variable physical parameter

for defining evolution in a uniformly mixed state in specified ranges of values and then separately increasing
f = ϵ

√
n , ϵ > 1, to determine general features of the dynamics.

To achieve the beautiful model of dynamics, separately using only
√
n to define evolution in a uniformly

mixed state in off-resonance k ̸= 1 dynamics, we begin by applying the synchronized off-resonance natural
evolution property defined in equation (22), effectively eliminating f , to express the JC and aJC Rabi
frequencies Rn+j , Rn+j and the respective related interaction parameters in equation (10) in the form

k ̸= 1 :
√
n =

1

2
kf ; ⇒ f = 2

√
n

k
; 0 < k <∞

JC : Rn+j = λ

√
n+ j +

(
k − 1

k

)2

n ; cn+j =

(
k−1
k

)√
n√

n+ j +
(
k−1
k

)2
n

; sn+j =

√
n+ j√

n+ j +
(
k−1
k

)2
n

aJC : Rn+j = λ

√
n+ j +

(
k + 1

k

)2

n ; cn+j =

(
k+1
k

)√
n√

n+ j +
(
k+1
k

)2
n

; sn+j =

√
n+ j√

n+ j +
(
k+1
k

)2
n

(35)

which shows that, in general off-resonance k ̸= 1 dynamics, natural evolution is effectively controlled only by
the mean photon number amplitude

√
n and the atom-field mode frequency detuning parameter k.

Before considering general off-resonance dynamics, we highlight two special dynamical conditions which
essentially eliminate k as a variable parameter

A. Maximally entangled state evolution at
√
n ≥ 11.2

We have established that at
√
n ≥ 11.2, the evolution reaches and remains in a maximally entangled state as

in Fig.9 (0 < f < ∞) for all 0 < k < ∞, now leading to the general property that the maximally entangled
state evolution at

√
n ≥ 11.2 is completely independent of both f and k

B. Large k → ∞

It is easily established that at very large k → ∞, (normally interpreted as thermodynamic equilibrium limit
ω0

ω → ∞ [16]), the Rabi frequencies and related parameters in equation (35) reduce to the form

k → ∞ :
k ∓ 1

k
≈ 1 ; Rn+j ≈ λ

√
n+ j + n ≡ Rn+j ; cn+j ≈

√
n√

n+ j + n
≡ cn+j
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sn+j ≈
√
n+ j√

n+ j + n
≡ sn+j (36)

which depend on
√
n, but are completely independent of k. Hence, at k → ∞, the mean photon number

amplitude
√
n is the only variable physical parameter which determines the natural evolution of the atomic

state in off-resonant JC and aJC models. Notice that the Rabi frequencies and related interaction parameters
at k → ∞ in equation (36) are exactly equal to the Rabi frequency and related interaction parameters define
in the natural evolution property in resonant weak coupling aJC model in equation (29), meaning that the
k → ∞ off-resonant JC and aJC natural evolution precisely reproduces all characteristic features of the
resonant k = 1 aJC natural evolution in the parameter ranges 0 <

√
n ≤ 0.1 in Fig.2, 0.1 <

√
n < 1 in Fig.4,

1 <
√
n ≤ 8.55 in Fig.6 , Fig.10 , Fig.11, 8.55 <

√
n < 9.57 in Fig.12 , Fig.13 and 9.57 ≤

√
n < 11.2 in Fig.8

, Fig.16 , Fig.17, which we have confirmed already at k = 20.755 as an example of very large k → ∞. Note
that, within the ground state evolution regime 0 <

√
n ≤ 0.1, the k → ∞ off-resonant JC natural evolution

reproduces precisely the resonant k = 1 JC natural evolution in Fig.1, as expected.
We observe that the k → ∞ off-resonant JC and aJC natural evolution defined in equation (36), which

precisely reproduces the resonant k = 1 aJC natural evolution over the parameter range 0 <
√
n ≤ 11.2, is

fixed and cannot describe the development from natural evolution into a completely disentangled pure state
and into an entangled state, which we have established to be achievable on increasing the residual detuning
parameter to very large values f → ∞ in the resonant k = 1 aJC model. We now go back to the general
definition of off-resonance k ̸= 1 natural evolution in equation (35).

3.3.1 General off-resonance k ̸= 1 natural evolution

To define off-resonance natural evolution in a general form, we maintain the property that the mean photon
number amplitude remains the only variable parameter

√
n. In this respect, we consider k to be proportional

to
√
n in the form k = ν

√
n, where ν is a numerical factor. We therefore define off-resonance natural

evolution, together with the Rabi frequencies and related interaction parameters in equation (35) or the
original equation (10), in the general form

k = ν
√
n ;

√
n =

1

2
kf ⇒ f =

2

ν
; ν = 2

λ

ω

Rn+j = λ

√
n+ j +

(
ν
√
n− 1

ν

)2

; cn+j =

(
ν
√
n−1
ν

)
√
n+ j +

(
ν
√
n−1
ν

)2
; sn+j =

√
n+ j√

n+ j +
(

ν
√
n−1
ν

)2

Rn+j = λ

√
n+ j +

(
ν
√
n+ 1

ν

)2

; cn+j =

(
ν
√
n+1
ν

)
√
n+ j +

(
ν
√
n+1
ν

)2
; sn+j =

√
n+ j√

n+ j +
(

ν
√
n+1
ν

)2
(37)

This now constitutes the general synchronized form of off-resonance dynamics in the JC and aJC models.
Since the numerical factor ν can be fixed within some specified ranges of values, 0 < ν < 1 , ν = 1 ,
1 < ν < ∞, the mean photon number amplitude

√
n becomes the only variable parameter in the natural

evolution defined in equation (37). It follows easily from equation (37) that the evolution reduces to resonance

k = 1 natural evolution at ν
√
n = 1, i.e., resonance is determined by ν = n−

1
2 , noting a factor 4 arising in

the reduced aJC model.
In characterizing the atomic state evolution over the entire mean photon number amplitude range 0 <√

n ≤ 11.2 for specified values of the numerical factor ν, we have established that,
(i) steady state time-independent evolution described by a maximally entangled state arises at

√
n ≥ 11.2,

as in Fig.(9), completely independent of ν > 0
(ii) within the range of small values 0 < ν < 1, setting ν ≤ 0.01 (i.e., 0 < ν ≤ 0.01) generates steady
state time-independent evolution described, respectively, by completely disentangled pure state in the regime
0 <

√
n ≤ 8.55, precisely similar to the corresponding evolution within the same

√
n in Fig.14 example, mixed

state in the regime 8.55 <
√
n < 9.57, precisely similar to the corresponding evolution in Fig.15 example

and entangled state in the regime 9.57 ≤
√
n < 11.2, precisely similar to the corresponding evolution in
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Fig.20 , Fig.21 examples; increasing ν into the range 0.01 < ν < 1 generates intermediate stage mixed states
describing time-dependent periodic evolution
(iii) within the range of large values ν > 1, setting ν → ∞ in equation (37) effectively reduces the off-
resonance JC and aJC models to the resonance weak coupling aJC model defined by equation (29); for
ν → ∞, off-resonance aJC dynamics is equivalent to the resonant aJC dynamics and effectively reproduces,
all the dynamical features of natural evolution in resonant strong and weak coupling aJC dynamics within
the corresponding ground state, mixed state and entangled state regimes plotted in the respective Fig.2 ,
Fig.4 , Fig.6 , Fig.8 , Fig.11-Fig.13 and Fig.16-Fig.19 examples; on the other hand, for ν → ∞, off-resonance
JC dynamics reproduces only the ground state evolution in the small

√
n regime 0 <

√
n of resonant JC

dynamics plotted in Fig.1 example; we observe that ν = 20.755 already gives the features ν → ∞; setting
ν in the range 1 < ν < 20.755 also generates intermediate stage mixed states describing time-dependent
periodic evolution

(iv) Optimal synchronized off-resonance evolution: ν = 1
Setting ν = 1 generates optimal synchronized off-resonance natural evolution controlled only by the mean
photon number amplitude

√
n in the (entire) range 0 <

√
n ≤ 11.2 in both JC and aJC models; setting ν = 1

in equation (37) gives
ν = 1

JC : Rn+j = λ

√
n+ j + (

√
n− 1)2 ; cn+j =

√
n− 1√

n+ j + (
√
n− 1)2

; sn+j =

√
n+ j√

n+ j + (
√
n− 1)2

aJC : Rn+j = λ

√
n+ j + (

√
n+ 1)2 ; cn+j =

√
n+ 1√

n+ j + (
√
n+ 1)2

; sn+j =

√
n+ j√

n+ j + (
√
n+ 1)2

(38)

which reveals an important dynamical property that the synchronized off-resonance natural evolution at
ν = 1 generalizes resonance natural evolution at f =

√
n defined by equations (23) , (21′).

In general, for the entire range of values of the mean photon number amplitude 0 <
√
n ≤ 11.2, the

synchronized off-resonance natural evolution at ν = 1 takes precisely similar forms in both JC and aJC
models, except in the ground state evolution regime 0 <

√
n ≤ 0.02, where the JC model does not generate

excitations, causing only free evolution of the ground state exactly the same as in the resonance evolution
in Fig.1, while the aJC model generates ground state excitations, causing transitions between the low-lying
qubit states |g0⟩ and |e1⟩, with significantly different dynamical features compared to the resonance evolution
in Fig.2.

For closer comparison, we have plotted the ground state evolution in off-resonance JC model in Fig.22
and in off-resonance aJC model in Fig.23, while in Fig.24, we compare the evolution of the ground state
excitation number ⟨σ−σ+⟩ and the excited state excitation number ⟨σ+σ−⟩ in the aJC model.
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Figure 22: Off-resonance natural evolution of degree of atomic state purity D (BLUE), concur-
rence C (RED) and excitation number ⟨σ+σ−⟩ (YELLOW) in the JC model at ν = 1 ;

√
n =

0.015 (within the ground state evolution regime 0 <
√
n ≤ 0.02) over scaled time τ = λt

The off-resonance evolution in Fig.22, exactly the same as the corresponding resonance evolution in Fig.1,
demonstrates that the property that the JC model does not generate ground state excitations and transitions
is an internal characteristic feature of the JC interaction mechanism, independent of the atom-field mode
frequency detuning.
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Figure 23: Off-resonance natural evolution of degree of atomic state purity D (BLUE), concur-
rence C (RED) and excitation number ⟨σ−σ+⟩ (YELLOW) in the aJC model at ν = 1 ;

√
n =

0.015 (within the ground state evolution regime 0 <
√
n ≤ 0.02) over scaled time τ = λt
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Figure 24: Off-resonance natural evolution of ground state excitation number ⟨σ−σ+⟩ (BLUE)
and excited state excitation number ⟨σ+σ−⟩ (RED) in the aJC model at ν = 1 ;

√
n =

0.015 (within the ground state evolution regime 0 <
√
n ≤ 0.02) over scaled time τ = λt; equal excitation

number axis is (YELLOW)

The ground state evolution in the off-resonance aJC model in Fig.23 , Fig.24 reveals significantly dif-
ferent dynamical features compared to the corresponding resonance evolution in Fig.2: (i) the maximum of
the concurrence (red) in Fig.23 is much broader compared to the corresponding sharp maximum in Fig.2,
signifying that the periodically evolving entangled state in off-resonance aJC dynamics is longer-lived (ii) in
Fig.23, the ground state spin excitation number ⟨σ−σ+⟩ (yellow) only undergoes periodic Rabi oscillations
with maximum at 1 and minimum at 1

2 , while Fig.24 reveals the important property that the minimum value
of the ground state spin excitation number (blue) coincides with the maximum value of the excited state spin
excitation number ⟨σ+σ−⟩ (red) at ⟨σ−σ+⟩ = ⟨σ+σ−⟩ = 1

2 , signifying evolution in atomic coherent state or
atom-field mode maximally entangled state, with equal probabilities, each 1

2 , to be in the ground or excited
state; here, we note that the ground and excited state spin excitation numbers are equal to the probabilities
to be in the ground and excited states, respectively.

Beyond the ground state evolution regime, synchronized off-resonance natural evolution in both JC and
aJC models are similar, as in the examples at

√
n = 9.57 in Fig.25 in the JC model and in Fig.26 in the aJC

model. Notice that, as expected, the off-resonance evolution in Fig.25 , Fig.26 is essentially the same as the
corresponding evolution at 9.57 in Fig.17 in resonant weak coupling aJC model.
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Figure 25: Off-resonance natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ−σ+⟩ (YELLOW) in the JC model at ν = 1 ;

√
n = 9.57 over scaled time τ = λt
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Figure 26: Off-resonance natural evolution of the degree of purity D (BLUE), concurrence C (RED) and spin
excitation number ⟨σ−σ+⟩ (YELLOW) in the aJC model at ν = 1 ;

√
n = 9.57 over scaled time τ = λt

Interestingly, the off-resonance JC, resonance aJC and off-resonance aJC natural evolution properties
defined in equations (29) and (38) may be interpreted collectively as a triplet of optimal natural evolution
at (

√
n− 1) , (

√
n) , (

√
n+1), well described by noting that the natural evolution profile of the concurrence

(red) and degree of purity (blue) in off-resonance aJC model in Fig.17 lies in-between the corresponding
profiles in off-resonance JC model in Fig.25 and aJC model in Fig.26.

We observe that, keeping
√
n at the natural evolution value in the various regimes over the entire range

0 <
√
n ≤ 11.2, but decreasing ν to much smaller values ν ≤ 0.01, generates steady state time-independent

evolution in completely disentangled pure state or stable mixed state or entangled state in the respective
state evolution regimes. On the other hand, increasing ν to comparatively larger values ν > 0.01 generates
intermediate stage mixed states describing time-dependent periodic evolution.

Up to this stage, we have provided a fairly complete description of the main features of the characterization
of the atomic state evolution, using the degree of purity, concurrence and spin excitation number in the
JC and aJC models. In resonance natural evolution in section 3.2, we identified strong and weak coupling
interactions specified by the residual detuning parameter values 0 < f < 1 and 1 < f <∞ (i.e., f < 1 ; f > 1),
respectively, thus leaving a gap at f = 1, which we identify as the intermediate coupling interaction regime.
We now proceed to this case of intermediate coupling interaction, where we obtain an important composite
physical state of the atom-field mode at resonance, specified by k = 1 , f = 1, effectively defining triple
resonance dynamics.

3.4 Resonant intermediate coupling interaction (k = 1 ; f = 1) : spin-displaced
field modes

The subject of discussion in this section is an offshoot from sections 3.2 and 3.3, where we have presented
interesting physical and fundamental quantum mechanical features of resonant k = 1 and off-resonant k ̸= 1
atom-field interaction in the strong interaction regime characterized by the residual detuning parameter f
values in the range 0 < f < 1 and weak coupling interaction regime characterized by 1 < f < ∞. It is
evident in the above sections that we have not addressed the question on the nature of the dynamics at the
intermediate coupling parameter value f = 1, which lies at the boundary of the strong coupling and weak
coupling parameter values.

To complete the dynamical picture presented in sections 3.2 and 3.3, we develop the unique physical
nature of the JC and aJC atom-field system in the resonant intermediate coupling interaction characterized
by the detuning parameter values k = 1 , f = 1. According to the parameter definitions ω0 = kω , ω = λf in
equation (8), the resonant intermediate coupling atom-field interaction in the JC and aJC models is governed
by the frequency and coupling constant triple resonance relations

k =
ω0

ω
; f =

ω

g
; k = 1 ; f = 1 ⇒ g = ω = ω0 (38)

We are not aware of any work in the existing literature which focusses attention on the physical nature of
the JC or aJC model under the triple resonance conditions given here in equation (38), particularly in the
form we now proceed to develop briefly as JC and aJC spin-displaced field modes.
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3.4.1 The JC spin-displaced field mode

Applying the triple resonance relation g = ω = ω0 from equation (38) in equation (3) provides the JC qubit
Hamiltonian H in the resonant intermediate coupling interaction in the form

g = ω = ω0 : HJC = h̄ω(â†â+ σ+σ− − 1

2
+ âσ+ + â†σ−) = h̄ω(N̂ + R̂) ; R̂ = âσ+ + â†σ− (39)

where N̂ = â†â + σ+σ− − 1
2 is the conserved JC excitation number operator defined in equation (3), while

R̂ defined here in equation (39) is the qubit state transition operator in the resonant intermediate coupling
interaction. We interpret the JC qubit Hamiltonian HJC in equation (39) as the Hamiltonian of a quantized
field mode of angular frequency ω driven by atomic spin, where the dynamics is characterized by the atom and
field mode alternately emitting and absorbing photons in red-sideband transitions. Indeed, the Hamiltonian
HJC is factorizable in terms of spin-displaced field mode annihilation and creation operators Â , Â† in the
form

Â = â+ σ− ; Â† = â† + σ+ ; HJC = h̄ω

(
Â†Â− 1

2

)
(40)

In the form defined in equation (40), we specifically interpret HJC as the Hamiltonian of a JC spin-displaced
field mode, with state annihilation and creation operators Â , Â†, respectively.

To determine the eigenstate spectrum of the JC spin-displaced field mode, we consider an interaction
starting from an atom-field initial state |en⟩ with the atom in excited state |e⟩ and field mode in number
state |n⟩. Applying the qubit state transition operator R̂ on the initial state |en⟩, we obtain coupled qubit
states (|en⟩ , |gn+ 1⟩) and eigenstates |ψ±

en⟩ satisfying state transition and eigenvalue operations

R̂ |en⟩ =
√
n+ 1 |gn+ 1⟩ ; R̂ |gn+ 1⟩ =

√
n+ 1 |en⟩ (41)

|ψ±
en⟩ =

1√
2
( |en⟩ ± |gn+ 1⟩ ) : N̂ |ψ±

en⟩ =
(
n+

1

2

)
|ψ±

en⟩ ; R̂ |ψ±
en⟩ = ±

√
n+ 1 |ψ±

en⟩

HJC |ψ±
en⟩ = E±

en|ψ±
en⟩ ; E±

en = h̄ω

(
n+

1

2
±
√
n+ 1

)
(42)

The eigenstates |ψ±
en⟩ are orthonormal, satisfying the relations

⟨ψ±
en|ψ±

en⟩ = 1 ; ⟨ψ±
en|ψ∓

en⟩ = 0 (43)

We have established that the qubit eigenstates |ψ±
en⟩ constitute the eigenstate spectrum of the JC spin-

displaced field mode satisfying state transition and eigenvalue operations generated by the spin-displaced
annihilation and creation operators Â , Â† in the form

Â |ψ±
en⟩ = |ϕ±en⟩ ; Â† |ϕ±en⟩ =

(
n+ 1±

√
n+ 1

)
|ψ±

en⟩ ; |ϕ±en⟩ =
1√
2

(√
n |en− 1⟩+ (1±

√
n+ 1 )|gn⟩

)
HJC = h̄ω

(
Â†Â− 1

2

)
: Â†Â |ψ±

en⟩ =
(
n+ 1±

√
n+ 1

)
|ψ±

en⟩ ⇒ HJC |ψ±
en⟩ = E±

en|ψ±
en⟩ (44)

We identify Â†Â as the excitation number operator of the spin-displaced field mode, with number eigenvalues
n+1±

√
n+ 1 =

√
n+ 1

(√
n+ 1± 1

)
. As expected, the energy spectrum of the JC spin-displaced field mode

agrees exactly with the energy spectrum of the equivalent JC qubit in equation (42). Finally, applying the

eigenvalue equation (44), the spin-displaced field mode time evolution operator UJC(t) = e−
i
h̄HJCt generates

time evolving eigenstates according to

UJC(t) = e−iω(Â†Â− 1
2 )t : UJC(t)|ψ±

en⟩ = e−iE±
ent|ψ±

en⟩ (45)

Up to this stage, we have established that in the resonant intermediate coupling interaction state g = ω = ω0,
the JC qubit Hamiltonian HJC in equation (39) constitutes a physically meaningful spin-displaced field mode
with well defined spin-displaced annihilation and creation operators, Hamiltonian and eigenstate spectrum
as presented in equations (40) , (42)-(45).
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For completeness, we observe that the appropriate order operators for studying the dynamics of the JC
spin-displaced field mode are the quadrature components X̂1 , X̂2 defined by

X̂1 =
1

2
(Â† + Â) ; X̂2 = − i

2
(Â† − Â) (46)

In addition to the eigenvalue equations (44), we have obtained the following relations useful for determin-
ing the mean values, fluctuations and Heisenberg uncertainty product in measurements of the quadrature
components in the eigenstates |ψ±

en⟩:

⟨ψ±
en|Â|ψ±

en⟩ = 0 ; ⟨ψ±
en|Â†|ψ±

en⟩ = 0 ; ⟨ψ±
en|ÂÂ†|ψ±

en⟩ =
(
n+ 1±

√
n+ 1

)
+ 1

⟨ψ±
en|[ Â , Â† ]|ψ±

en⟩ = 1 (47)

The mean value of the commutator [ Â , Â† ] obtained in equation (47) means that the JC spin-displaced
field mode has bosonic properties in the eigenstate |ψ±

en⟩ computational space. Details of this beautiful JC
spin-displaced field mode dynamics, with great potential for applications to quantum thermodynamics, will
be presented elsewhere. We proceed to the corresponding aJC spin-displaced field mode.

3.4.2 The aJC spin-displaced field mode

In the resonant intermediate coupling interaction governed by the triple resonance relation g = ω = ω0 in
equation (40), the aJC qubit Hamiltonian HaJC is obtained in the form

HaJC = h̄ω

(
ââ† + σ−σ+ − 1

2
+ âσ− + â†σ+

)
= h̄ω( N̂ + R̂ ) ; R̂ = âσ− + â†σ+ (48)

where N̂ = ââ† + σ−σ+ − 1
2 is the conserved aJC excitation number operator defined in equation (3),

while R̂ defined in equation (48) is the qubit state transition operator in the resonant intermediate coupling
interaction. We interpret the aJC qubit HamiltonianHaJC in equation (48) as the Hamiltonian of a quantized
field mode of angular frequency ω driven by atomic spin, where the dynamics is here characterized by
simultaneous emission or absorption of photons by both atom and field mode in blue-sideband transitions.

The HamiltonianHaJC is factorizable in terms of spin-displaced field mode annihilation-creation operators

Â , Â
†
in the form

Â = â+ σ+ ; Â
†
= â† + σ− ; HaJC = h̄ω

(
Â

†
Â+

1

2

)
(49)

which provides the interpretation that HaJC is the Hamiltonian of an aJC spin-displaced field mode with

state annihilation-creation operators Â , Â
†
.

To determine the eigenstate spectrum of the aJC spin-displaced field mode, we consider an interaction
starting from an atom-field initial state |gn⟩ with the atom in ground state |g⟩ and field mode in number

state |n⟩. Applying the qubit state transition operator R̂ on the initial state |gn⟩, we obtain coupled qubit

states (|gn⟩ , |en+ 1⟩) and eigenstates | ψ±
gn⟩ satisfying state transition and eigenvalue operations

R̂ |gn⟩ =
√
n+ 1 |en+ 1⟩ ; R̂ |en+ 1⟩ =

√
n+ 1 |gn⟩ (50)

| ψ±
gn⟩ =

1√
2
( |gn⟩ ± |en+ 1⟩ ) : N̂ | ψ±

gn⟩ =
(
n+

3

2

)
| ψ±

gn⟩ ; R̂ |ψ±
gn⟩ = ±

√
n+ 1 | ψ±

gn⟩

HaJC | ψ±
gn⟩ = E±

gn| ψ
±
gn⟩ ; E±

gn = h̄ω

(
n+

3

2
±

√
n+ 1

)
(51)

The eigenstates | ψ±
gn⟩ are orthonormal, satisfying the relations

⟨ ψ±
gn| ψ

±
gn⟩ = 1 ; ⟨ ψ±

gn| ψ
∓
gn⟩ = 0 (52)
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We have established that the qubit eigenstates | ψ±
gn⟩ constitute the eigenstate spectrum of the aJC spin-

displaced field mode satisfying state transition and eigenvalue operations generated by the spin-displaced

annihilation-creation operators Â , Â
†
in the form

Â | ψ±
gn⟩ = | ϕ±gn⟩ ; Â

†
| ϕ±gn⟩ =

(
n+ 1±

√
n+ 1

)
| ψ±

gn⟩ ; | ϕ±gn⟩ =
1√
2

(√
n |gn− 1⟩+ (1±

√
n+ 1 )|en⟩

)
HaJC = h̄ω( Â

†
Â+

1

2
) : Â

†
Â | ψ±

gn⟩ =
(
n+ 1±

√
n+ 1

)
| ψ±

gn⟩ ⇒ HaJC | ψ±
gn⟩ = E±

gn| ψ
±
gn⟩
(53)

We identify Â
†
Â as the excitation number operator of the spin-displaced field mode, with number eigenvalues

n + 1 ±
√
n+ 1 =

√
n+ 1

(√
n+ 1± 1

)
. As expected, the energy spectrum of the aJC spin-displaced field

mode agrees exactly with the energy spectrum of the equivalent aJC qubit in equation (51).
Applying the eigenvalue equation (53), the spin-displaced field mode time evolution operator UaJC(t) =

e−
i
h̄HaJCt generates time evolving eigenstates according to

UaJC(t) = e
−iω

(
ˆ
A

† ˆ
A+ 1

2

)
t
: UaJC(t)| ψ

±
gn⟩ = e−iE±

gnt| ψ±
gn⟩ (54)

We have thus established that in the resonant intermediate coupling interaction state g = ω = ω0, the aJC
qubit Hamiltonian HaJC in equation (48) constitutes a spin-displaced field mode with well defined spin-
displaced annihilation-creation operators, Hamiltonian and eigenstate spectrum as presented in equations
(49) , (51)-(54).

The appropriate order operators for studying the dynamics of the aJC spin-displaced field mode are the

quadrature components X̂1 , X̂2 defined by

X̂1 =
1

2
( Â

†
+ Â ) ; X̂2 = − i

2
( Â

†
− Â ) (55)

We have obtained the following relations useful for determining the mean values, fluctuations and Heisenberg

uncertainty product in measurements of the quadrature components in the eigenstates | ψ±
gn⟩:

⟨ ψ±
gn| Â| ψ

±
gn⟩ = 0 ; ⟨ ψ±

gn| Â
†
| ψ±

gn⟩ = 0 ; ⟨ ψ±
gn| Â Â

†
| ψ±

gn⟩ =
(
n+ 1±

√
n+ 1

)
+ 1

⟨ ψ±
gn|[ Â , Â

†
]| ψ±

en⟩ = 1 (56)

The mean value of the commutator [ Â , Â
†
] obtained in equation (56) means that the aJC spin-displaced

field mode has bosonic properties in the eigenstate | ψ±
gn⟩ computational space. Details of the aJC spin-

displaced field mode dynamics, with great potential for applications to quantum thermodynamics, will be
presented elsewhere.

We close this brief presentation of the JC and aJC spin-displaced field modes by giving an interesting
physical interpretation. Comparing the eigenvalue equations (44) and (53) reveals that the JC and aJC

spin-displaced mode number operators Â†Â , Â
†
Â, respectively, have the same eigenvalue (same excitation

number) n+ 1±
√
n+ 1. This is attributed to the property that the JC and aJC number operators and the

corresponding Hamiltonians HJC , HaJC are duality symmetry conjugates, related by a duality symmetry
transformation well developed in [3]. The duality symmetry operation transforms the atomic spin states
according to |g⟩ → |e⟩ , |e⟩ → |g⟩, with an associated global phase factor in each case. In this respect, the
JC and aJC spin-displaced mode eigenstates |ψ±

en⟩ , |ψ±
gn⟩ defined in equations (42) , (51) are orthogonal

duality symmetry conjugates, noting that the transformation generates an associated global phase factor. If
we now include a transformation property ω → −ω (not considered in [3]), then the full operation of the
duality symmetry transformation leads to the interesting physical interpretation that the JC and aJC spin-

displaced modes are duality symmetry conjugates, with respective energy spectra E±
en , E±

gn in equations

(42) , (51), noting that the transformation ω → −ω may give E±
gn an overall negative sign. Details of the

potentially exciting duality symmetry conjugation property of the JC and aJC spin-displaced field modes
will be developed elsewhere in a general context of the full quantum Rabi model in which the spin-displaced
field mode Hamiltonians in equations (39) , (48) arise in a general context at critical coupling constant
λc = 2gc =

√
ωω0 where the quantum Rabi model and the JC model undergo a quantum phase transition

[16 , 17].
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4 Conclusion

In the characterization of the atomic state evolution in the Jaynes-Cummings (JC) and anti-Jaynes-Cummings
(aJC) models, we have established the following important dynamical properties of the atom-field mode
interaction in the quantum Rabi model: (i) the aJC model has a non-vanishing residual detuning parameter
f > 0, meaning that the aJC and therefore, the full quantum Rabi, interaction mechanism is intrinsically
detuned, whereas the JC detuning parameter vanishes at resonance (ii) in the aJC model, the atomic initial

ground state |g0⟩ is occupied, having excitation number ⟨g0| N̂ |g0⟩ = 3
2 , and the aJC interaction mechanism

generates blue-sideband qubit transitions from an initial ground state |g0⟩, characterized by pure Rabi
oscillations between the qubit states |g0⟩ and |e1⟩ in the small mean photon number range 0 <

√
n ≤ 0.1;

the ground state |g0⟩ is an eigenstate of the JC Hamiltonian, which therefore cannot generate transitions
from an initial ground state (iii) since resonant JC interaction is completely independent of the residual
detuning parameter f > 0, the atomic state evolution over scaled time τ = λt in resonant JC model is
independent of coupling strength defined by f , thus taking the same form in the strong 0 < f < 1 and
weak f > 1 coupling interaction, and only spontaneously develops into a short-lived nearly pure state in
the middle of the first collapse period of the spin excitation number (or atomic state population inversion)
within the mean photon number amplitude range 1 <

√
n ≤ 8.55; this spontaneous evolution to a nearly

pure state is not a steady state property, but may be an internal natural coherence property of the atom;
for larger mean photon number amplitude

√
n > 8.55, the atomic state evolution develops into mixed and

entangled state evolution regimes, then into a maximally entangled state at
√
n ≥ 11.2, meaning that the

usual efforts towards disentangling the short-lived pure state in the very large mean photon number n→ ∞
limit may be far-fetched approximations (iv) unification of the mean photon number amplitude

√
n and

the detuning parameters f , k generates natural evolution property signifying atom in a uniformly mixed
state in the aJC model and in the off-resonance (detuned) JC model, each composed of well defined ground
state, mixed state and entangled state evolution regimes; in the resonant strong coupling 0 < f < 1 aJC
model, the atomic state evolution is characterized by pure Rabi oscillations within the ground state regime,
developing collapses and revivals in the mixed state evolution regime where the atomic state spontaneously
evolves to a short-lived nearly pure state precisely similar to the corresponding evolution in the resonant
JC model described above ; increasing the residual detuning parameter f to very large values f → ∞ in
the resonance k = 1 aJC model, and similarly, decreasing the detuning parameter k to comparatively very
small values k ≤ 0.01

√
n in off-resonance k ̸= 1 JC and aJC models, generates steady state time-independent

evolution of the degree of purity, concurrence and spin excitation number at their appropriate maximum or
minimum values, signifying the atom in an exact completely disentangled pure state, stable mixed state or
stable entangled state describing steady state dynamics at very large residual detuning f → ∞ in resonance
aJC model or comparatively very small detuning k ≤ 0.01

√
n in off-resonance JC and aJC models (v) at

triple resonance λ = ω = ω0, which occurs at k = 1 , f = 1, the atom-field mode interaction in the quantum
Rabi model reduces to duality symmetry conjugate JC and aJC spin-displaced field modes with well defined
spectrum of energy eigenstates and eigenvalues.
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