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Convergence of the Laplace 
and the alternative multipole 
expansion approximation series 
for the Coulomb potential
E. O. Jobunga 1*, C. O. Wandera 1 & O. S. Okeyo 2

Multipole expansion is a powerful technique used in many-body physics to solve dynamical problems 
involving correlated interactions between constituent particles. The Laplace multipole expansion 
series of the Coulomb potential is well established in literature. We compare its convergence with our 
recently developed perturbative and analytical alternative multipole expansion series of the Coulomb 
potential. In our working, we confirm that the Laplace and the analytical alternative multipole 
expansion series are equivalent as expected. In terms of performance, the perturbative alternative 
multipole expansion series underapproximate the expected results to some extent while the Laplace 
and the analytical alternative multipole expansion series yield results which are relatively accurate 
but oscillatory in nature even with a higher number of angular momentum terms employed. As a 
practical example, we have evaluated the Slater double integrals for two-electron systems using the 
multipole expansion techniques and a mean field approximation. The estimated results show that only 
spherical interactions are dominant while the higher-order interactions are negligible. To highlight the 
discrepancy in the application of each of the formulations of the multipole expansion series for the 
electron-electron interaction potential, an estimation of the non-relativistic groundstate energies of 
some helium-like systems, evaluated using the spherical approximation of the multipole potential, is 
provided. Our findings are likely to be useful in the treatment of the Coulomb potential in electronic 
structure calculations as well as in celestial mechanics.

The Laplace multipole expansion series is established in the works of Laplace and Legendre in their search for 
solutions to the problem of attractions. The historical developments that led to the derivation of the expansion 
series and the introduction of the Legendre polynomials, for the first time, as the coefficients used in the Laplace 
expansion are captured in Laden’s  thesis1. The Laplace multipole expansion has become conventional knowledge 
in physics  textbooks2 and it is quite useful in solving the many-body physics problems in celestial mechanics, 
quantum physics and chemistry, nuclear physics, and condensed matter physics.

Naturally, the multipole expansion becomes convenient to use in solving physical problems in 3D if expressed 
in the spherical polar coordinates. This decomposes the problem as a product of both radial and angular parts. 
The radial part can be treated as a 1D case while the well defined angular momentum  algebra3 can be used to 
simplify the angular parts. Several studies have employed multipole expansion techniques in the recent past in 
solving physical problems of  interest4–9.

In our alternative multipole expansion of the Coulomb  potential10,11, we stated that the Laplace multipole 
expansion series of the Coulomb repulsion term is incomplete, and therefore inaccurate. Vaman clarified that 
both the Laplace and the alternative multipole expansion are indeed  equivalent12. Since the Laplace expansion 
series is a single-index summation while the alternative method is a double-index summation series, it becomes 
necessary to test the conditions for convergence of the two methods. We also compare the accuracy of the Laplace 
expansion method, relative to our perturbative and analytical alternative multipole expansion methods, in esti-
mating the expected results. We have seen in literature that such a comparison, not exactly similar to the current 
study, is reported in ref.13,14. Comparison of different methods allows characterization of relative accuracy and 
capabilities, which is quite instrumental in guiding  application13. This is particularly important given the fact 
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that the alternative multipole expansion has already been successfully employed in determining the electronic 
structure for neutral  atoms15,16.

Theory
The Coulomb repulsion potential term can be expressed as

which reduces to the Laplace multipole expansion series,

where t̃ = r</r> , r> = max{ri , rj} , r< = min{ri , rj} , x = cos θ , with θ being the relative angle between the posi-
tion vectors �ri and �rj , l are non-negative integers, and Pl(x) are the lth order Laplace coefficients of t̃ l , also known 
as the Legendre polynomials. It is important to note that the form given by Eq. (1) is considered as the generating 
function for the Legendre  polynomials2,17.

In the alternative  approach10,11, the multipole expansion of the Coulomb potential

can also be expressed in the basis of Legendre polynomials, where the coefficients

are a function of the spherical Bessel-like functions, j̃l(t̃) , which can be expanded in the perturbative polynomial 
form  as10,11

or analytically as a differential  equation11

with

and

defined in terms of t̃ in this case.
The equivalence of Eqs. (2) and (3) shows that

is an identity.
From the identity relation in Eq. (10), we can further infer that:
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Using the relations given by Eq.  (9), we have analytically tested and confirmed the inferences given by 
Eqs. (11)–(12) for the first two orders of the spherical Bessel-like functions herebelow. The zeroth-order spheri-
cal Bessel-like function simplifies to:

Likewise, the first-order spherical Bessel-like function simplifies to:

The use of the recurrence relations given by Eqs. (13) and (14) can be useful in eliminating singularities associ-
ated with the analytical expression of the spherical Bessel-like functions, j̃l(t̃)11, as t̃ → 0.

As a practical example, we use the Laplace and the alternative multipole expansion series, within a meanfield 
approximation, to estimate the Slater double integrals Fl18

for helium-like systems, where the higher-order terms involve the exchange of angular momentum quantum 
number between the s and the lth orbital. The optimization is based on the root mean value of t,

per solid angle, obtained by determining the root mean square value of t scaled by 2π as given by Eq. (32) of 
ref.16. This, consequently, yields

The unscreened hydrogenic radial orbitals can be employed as the trial wavefunctions in evaluating Eq. (17).
In solving the Schrödinger equation for the two-electron atomic systems,

with single-electron wavefunction φ(ri) and the orbital energy eigenvalues ǫαi , the single-electron Hamiltonian 
operator (in atomic units) can be expressed as

where γli = 1
2
 is the orbital angular momentum-dependent partitioning  fraction15,16 for the systems in their 

groundstate. The first, second, and third terms in Eq. (21) are the kinetic energy term, the electron-nuclear 
interaction, with Z as the nuclear charge, and the electron-electron interaction respectively. The second and the 
third terms form the potential energy function for the systems.

Within the spherical approximation, the potential energy functions for the system reduce to
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using the Laplace multipole expansion series, or to

using the alternative multipole expansion series.
Making use of the mean field approximation given by Eq. (18), and the minimization of the lowest-order 

term of the multipole potential energy function, as derived in refs.15,16, Eq. (23) can be re-written as a single-
electron potential

with an effective nuclear charge

The second term of Eq. (25) can be seen as a nuclear charge screening parameter which is dependent on the 
magnitude of nuclear charge and the partitioning fraction.

Likewise, Eq. (22) can be expressed as

with

expressed in terms of the spatial coordinate, ri , using the Slater integral as defined in Eq. (17) or probabilisti-
cally as

assuming that ri and rj have an equal probability of being greater. Other possible assumed scenarios can include 
ri ≤ rj or rj ≤ ri.

For the alternative multipole expansion method, the energy eigenvalue

for an orbital with the principal quantum number ni , can be obtained directly by using the effective potential 
defined in Eq. (25). However, for the Laplace multipole expansion method, the Schrödinger equation must be 
solved numerically using the potential defined by Eqs. (26) and (27) or perturbatively

using

as the adjusted effective charge corresponding to the scenario assumed in Eq. (28).
With the energy eigenvalues, the non-relativistic groundstate energy for two-electron atomic systems, with 

1s2 configuration, can be determined  by16

employing the anti-symmetric indistinguishable Hartree-Fock wavefunctions

with the spatial and spin coordinates �qi = (�ri ,�si) , in the solution of the Schrödinger equation for the separable 
Hamiltonian derived using the multipole expansion series.
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Results
Our goal in this work is to test the convergence of the Laplace and the alternative multipole expansion series and 
also to compare the performance of both methods in estimating the exact function given by Eq. (1). The spheri-
cal Bessel-like functions, j̃l(t̃) , used in the alternative multipole expansion can be evaluated perturbatively as 
given by Eqs. (5) and (6) or analytically as given by Eq. (7). Our calculations for convergence and performance 
are computed both perturbatively and analytically. As an example to test the convergence of the two approaches 
in real physical applications, we have calculated the Slater integrals and the non-relativistic groundstate energy 
of two-electron helium-like systems within the spherical approximation of the electron-electron interaction.

In Fig. 1, we plot the convergence of the first two orders of the Laplace functions, t̃ l , relative to the alternative 
multipole expansion functions, hl(t̃) , as given by Eq. (10). The domain 0 ≤ t̃ ≤ 1 has been chosen to coincide 
with the regime of convergence of the Laplace multipole expansion series. The convergence tests should confirm 
the validity of the identity relations given by the stated equation. Since hl(t̃) is an infinite series function, it can 
be seen that only three terms (with kmax = 2 ) of the summation series already yield reasonable trend of conver-
gence, albeit slowly. In subsequent figures, we use hkmax=2

l (t̃) as our best converged perturbative results. From 
Eqs. (4)–(6), it can be seen that the divergence between the Laplace functions and the perturbative alternative 
multipole expansions stems from the approximation of the factor 

√

1+ t̃2 → 1 as kmax → 0.
In Fig. 2a, we compare the convergence of the perturbative results with the corresponding analytical, hl(t̃) , 

functions and the Laplace basis functions as given by Eqs. (10) and (12) for the first six orders of l. As already 
shown in Fig. 1, except at lower values of t̃ , the perturbative basis functions do not agree fully with the cor-
responding Laplace basis functions in all the cases considered. As expected, the analytical basis functions, on 
the other hand, show an excellent agreement with the corresponding Laplace basis functions. In the figure, the 
analytical hl(t̃) functions and the Laplace basis functions are overlapping in the entire domain. In Fig. 2b, we 
show the relative deviation between the analytical and the Laplace basis functions. The relative deviations are 
calculated as the absolute difference between the analytical hl(t̃) and the Laplace fl(t̃) = t̃ l functions divided 
by the Laplace functions. The observed relative deviations can be attributed to numerical noise as well as to the 
divergences due to singularities in the analytical function as t̃ → 0.

Because of the slow convergence of the perturbative functions, it became of importance to test the perfor-
mance of the expansions in approximating the value of the analytic function given by Eq. (1) for various values 
of t̃ across the angular spectrum. The performance results are summarized in Fig. 3 for all values of x = cos θ . 
For lower values of t̃ , fewer angular momentum values are necessary for convergence. For t̃ = 0.75 , reasonable 
convergence is obtained with lmax = 10 . The perturbative expansion on the other hand converges faster with 
fewer values of lmax and kmax , although the expected results are underapproximated to some extent using this 
approximation. In particular, complete convergence for the perturbative expansion is obtained using lmax = 5 
and kmax = 2 only. As t̃ → 1 , a higher number of angular momenta are necessary for convergence if the Laplace 
or the analytical multipole functions are used. In Fig. 4, we show that for t̃ = 1 convergence of the expected func-
tion is not yet achieved even with lmax = 30 for the Laplace and the analytical multipole expansion. It can also 
be observed in Fig. 4 that as the angular momenta increases, the period and the amplitude of oscillation of the 
Laplace and the analytical multipole expansion results reduces. The perturbative expansion, on the other hand, 
is converged with less angular momenta and shows remarkable stability in the approximation of the expected 
function. The perturbative results offer the possibility to isolate features that are dependent on the lower order 
terms of the multipole expansion of the Coulomb potential.

The equivalence between the Laplace and the analytical alternative multipole expansion methods provides a 
wider choice of techniques to use when dealing with the Coulomb repulsion term. The Laplace basis functions 

Figure 1.  (Color online) Comparison of the functions (a) f0(t̃) = 1 and h0(t̃) = f kmax

0
(t̃) and (b) f1(t̃) = t̃ and 

h1(t̃) = f kmax

1
(t̃) , summed up to the maximum value ( kmax ), plotted using left and right hand side of Eq. (10) 

respectively. The black solid line corresponds to the Laplace basis functions, t̃ l.
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appear simpler, in comparison with the analytical functions, but the underlying difficulty lies in the uncertainty 
of identifying the r> and r< variables. In the analytical alternative multipole expansion, on the other hand, it 
is not necessary to identify the r> and r< variables in the mathematical manipulation of the electron-electron 
interaction. Additionally, as already shown in  references15,16, the correlated term becomes separable in the alter-
native multipole expansion within some meanfield approximation, yielding a definite nuclear charge screening 
parameter, making it quite favourable to use for computations.

As a practical example, we have compared the Slater  integrals18 for the 1s − nl interacting states estimated 
using the Laplace and the lowest-order perturbative alternative multipole expansion series for two electron 
systems as expressed in Eq. (17). The results are presented in Table 1. The calculations have been done using 
the unscreened hydrogenic radial wavefunctions and the mean-field approximation in Eq. (19). As expected the 
analytical alternative multipole expansion yields results equivalent to the Laplace multipole expansion results. The 
lowest-order perturbative alternative multipole expansion results, on the other hand, are slightly less by a factor. 
From the results presented in the table, it is evident that the higher order multipole interactions are negligible 
and only become important when the lower -order interactions vanish.

Figure 2.  (Color online) (a) Comparison of the six functions of fl(t̃) = tl , hl(t̃) = f̃ kmax

l (t̃) with the value 
kmax = 2 , and the analytical hl(t̃) = f̃l(t̃) , plotted using left and right hand side of Eq. (12) respectively. The 
solid and the dash-dot lines represent the perturbative and the analytical hl(t̃) functions, as given by Eqs. (5)–
(7), while the dashed lines represent the Laplace basis functions, fl(t̃) = t̃ l , respectively. The analytical hl(t̃) 
functions and the Laplace basis functions are overlapping in the figure. (b) The relative deviation given as the 
absolute difference between the analytical hl(t̃) and the Laplace fl(t̃) = t̃ l functions divided by the Laplace 
functions.

Figure 3.  (Color online) Convergence of the Laplace and the perturbative alternative multipole expansion 
series in comparison to the expected function g(x, t̃) = (1− 2xt̃ + t̃2)−

1

2 given by Eq. (1) , at t̃ = 0.75 , as a 
function of: (a) the angular momenta L with kmax = 2 and, (b) kmax with Lmax = 10 . The black solid line is the 
expected curve. The blue and red solid lines in (a) are overlapping. The Laplace functions are denoted by dashed 
lines in (a) and gL in (b).
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As a test of convergence in the application of both multipole series expansion methods, we have estimated the 
non-relativistic groundstate energies of helium-like systems, with 1 ≤ Z ≤ 10 , using the spherical approximation 
of the series. For ease of comparison, we have generated separable interaction potentials corresponding to both 
expansion series. Making the Laplace potential separable is quite a challenging task though. To achieve this goal, 
we have created three different scenarios representing all possible configurations in the electronic distributions. 
Firstly, we have assumed that the spatial coordinate ri is greater that the other coordinate rj in the entire domain. 
Secondly, we assumed that the reverse is true ( rj > ri ), and lastly we have assumed that either ri or rj has an equal 
probability of being greater. With separable potentials, it is possible to solve the Schrödinger equation analytically 
for the two-electron systems. To enhance clarity in our comparison, we use the Hartree-Fock expansion of the 
wavefunction for all the cases considered. We have also avoided the use of self consistent calculations, which 
usually require several iterations for convergence, by choosing to use the separable potentials. The results of our 
estimation are presented in Table 2 in comparison with the literature  values19.

From the results in Table 2, it can be seen that, except for the negatively charged hydrogen ion which has 
varied results, the Laplace multipole expansion approximation yields tight binding groundstate energies as 
presented in the three scenarios. The scenario with ri ≤ rj have the highest binding energies while the scenario 
with rj ≤ ri have the least among the three scenarios presented. The correlation between the scenarios is also 
evident, that is, the corresponding results have a common difference among the positively charged ions. Using 
the literature  values19 as our benchmark, we can say that Lap1 results are the best case scenario for the Laplace 
multipole expansion for two-electron systems since the groundstate energy of the negatively charged hydrogen 
ion is quite close to the reference value. The effect of the electron-electron interaction for the Laplace scenarios 

Figure 4.  (Color online) Convergence of the Laplace and the perturbative alternative multipole expansion 
series in comparison to the expected function g(x, t̃) = (1− 2xt̃ + t̃2)−

1

2 given by Eq. (1) , at t̃ = 1.00 , as 
a function of the angular momenta ( Lmax = 10 and Lmax = 30 ) with kmax = 2 . The black solid line is the 
expected curve. The Laplace functions are denoted by gLL while the perturbative function by gkL . The logarithmic 
scale has been used for clarity.

Table 1.  Comparison of Slater integrals for the 1s − nl interacting states evaluated using Eqs. (17) and (19) for 
the Laplace and the lowest-order perturbative alternative multipole expansion of the Coulomb repulsion 
term. The calculations have been done using the unscreened hydrogenic radial wavefunctions.

F
l

1s − nl Laplace Perturbative

F
0 1s-1s 0.6250Z 0.6240Z

F
1 1s-2p 4.5409× 10

−3
Z 4.5337× 10

−3
Z

F
2 1s-3d 8.8323× 10

−6
Z 8.8183× 10

−6
Z
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can be seen to be a weak perturbation at higher Z values. This is because the nuclear charge screening term 
appears to be independent of the nuclear charge.

The alternative multipole approximation results in Table 2, on the other hand, presents the least binding ener-
gies for the positive charged ions. This is because of the optimization used in generating the separable potential, 
which associates the nuclear charge screening parameter with the nuclear charge itself and in the process, max-
imising the electron-electron interaction. However, it can be observed that, except for the negatively charged 
hydrogen ion, the binding energies for the alternative multipole expansion approximation are still higher than the 
literature  values19. The disparity with literature values widens with increase in charge polarisation, Zp = Z − Ze , 
with Z as the nuclear charge and Ze as the total electronic charge. This could be a pointer to a possible inadequacy 
of the Hamiltonian used in accounting for some of the interactions. Future investigations can probe the disparity 
further, for example, by including the higher-order multipole interactions as well as the relativistic effects like 
spin-orbit coupling and spin-spin interactions.

Conclusion
The convergence as well as the performance of the Laplace multipole expansion of the Coulomb potential, in 
comparison with our recently developed alternative multipole expansion series, is investigated in this study. We 
have confirmed that the Laplace and the analytical alternative multipole expansion series are indeed equivalent 
and offer a higher degree of accuracy if a larger lmax is used in the approximation. The perturbative alternative 
multipole expansion, on the other hand, converges with a much lower value of lmax and kmax and is stable against 
oscillations in results as t̃ → 1 but the converged results underapproximate the expected results to some extent 
at all angles. The stability of the perturbative results may be useful in isolating physically meaningful features 
even with less angular momenta in converged results.

As a practical example, we have shown that, despite the equivalence of the two formulations of the multipole 
expansion series, the results generated by each form can be very different depending on the optimization proce-
dures used. In the present case, in the solution of the non-relativistic groundstate energy for helium-like systems 
with 1 ≤ Z ≤ 10 , the alternative multipole expansion leads to an effective nuclear charge with a charge-dependent 
nuclear screening parameter. The Laplace multipole expansion, on the other hand, leads to a nuclear screening 
parameter which is charge independent. The disparity in the results obtained in the two approaches is large. 
Comparatively, the alternative multipole expansion performs better relative to the literature values, with the 
disparity in results varying as a function of the charge polarisation between the nucleus and electrons.

Data availibility
All the data generated in the work are embedded as figures in the manuscript.
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