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Entire expressed peripheral blood
transcriptome in pediatric severe
malarial anemia

Samuel B. Anyona 1,2 , Qiuying Cheng 3, Sharley A. Wasena2,4,
Shamim W. Osata 2, Yan Guo5, Evans Raballah 2,6, Ivy Hurwitz 3,
Clinton O. Onyango 2,4, Collins Ouma 2,4, Philip D. Seidenberg7,
Benjamin H. McMahon8, Christophe G. Lambert 9, Kristan A. Schneider 9,10 &
Douglas J. Perkins 2,3

This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global
cause of childhood morbidity and mortality, compares the entire expressed
whole blood host transcriptome between Kenyan children (3-48 mos.) with
non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression
analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA,
signifying impairments in host inflammasome activation, cell death, and innate
immune and cellular stress responses. Immune cell profiling shows decreased
memory responses, antigen presentation, and immediate pathogen clearance,
suggesting an immature/improperly regulated immune response in SMA.
Module repertoire analysis of blood-specific gene signatures identifies up-
regulation of erythroid genes, enhanced neutrophil activation, and impaired
inflammatory responses in SMA. Enrichment analyses converge on disruptions
in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome
system, autophagy, and heme metabolism. Pathway analyses highlight acti-
vation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)−1
target and Reactive Oxygen Species (ROS) signaling] as a central theme in
SMA. These signaling pathways are also top-ranking in protein abundance
measures and a Ugandan SMA cohort with available transcriptomic data.
Targeted RNA-Seq validation shows strong concordance with our entire
expressed transcriptomedata. Thesefindings identify keymolecular themes in
SMA pathogenesis, offering potential targets for new malaria therapies.

Malaria remains a significant global public health challenge with 249
million annual cases and 608,000 deaths1. The majority of the cases
(233 million, 93.6%) and mortality (580,000, 95.4%) occurred in the
WHO African region and are due to infections with Plasmodium
falciparum1, mainly in children under five years of age. Kenya faces a
substantial challenge with P. falciparum malaria, reporting ∼3.42
(2.23–5.02)million annual cases and∼11,788 (11,100–12,700) deaths,

primarily in the under-five population1. Since the disease burden
increases with transmission intensity, severemalaria remains among
the leading causes of morbidity and mortality in children residing in
holoendemic P. falciparum regions of Kenya, and other such regions
of sub-Saharan Africa2–4. In high transmission regions, the primary
manifestation of severe malaria is severe malarial anemia [SMA,
hemoglobin (Hb)<6.0 g/dL] in the presence and absence of
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respiratory distress, with cerebral malaria occurring only in rare
(atypical) cases2,5,6.

The etiology of SMA is multifaceted and includes overlapping
characteristics such as the lysis of infected and uninfected erythrocytes,
sequestration of erythrocytes in the spleen, and suppression of bone
marrow functions7,8. Although natural immunity is acquired following
repeated infections with P. falciparum9–11, innate immunity is particu-
larly important for influencing disease severity in young, malaria-naïve
children. Our previous longitudinal studies in Kenyan children using a
combination of candidate-gene approaches, genome-wide association
studies, high-throughput genotyping, and array-based whole tran-
scriptional profiling revealed that the development of SMA ismediated,
partially by innate immune response genes7,12–15. Our targeted tran-
scriptome analyses also revealed that differentially expressed genes
(DEGs) in host ubiquitination processes are a central feature of SMA
pathogenesis16. Microarray analysis of candidate genes in whole blood
identified DEGs that encode amino acid transport, phospholipid meta-
bolic processes, and positive regulation of nitrogen metabolism in
Gabonese children with SMA (<6 years old)17.

Advances in high-throughput sequencing technologies and
bioinformatics analyses have provided important insights into the
human immune response to P. falciparum and identified potential
vaccine candidates17–20. For example, studies investigating gene
expression in adults during controlled human malaria infection
experiments identified >2,700DEGs in thewhole blood transcriptome,
for which a subset of 265 genes was associated with transcription and
cell-cycle regulation, phosphatidylinositol signaling, and erythrocytic
development21. In addition, next-generation RNA sequencing in whole
blood, which has the potential to concomitantly capture host and
parasite gene expression, showed that severe malaria (i.e., cerebral
malaria, hyperlactatemia, or their combination) in Gambian children
(<16 years old) was associated with increased expression of granulo-
poiesis and interferon-γ–related genes, and inadequate suppression of
type 1 interferon signaling18. Additional analysis of whole blood tran-
scriptomes in Ugandan children (age; 18 mos. to 12 yrs.) revealed that
erythropoietic and nuclear factor erythroid 2 like 2 (NRF2)-regulated
genes were differentially expressed between cerebral malaria and
SMAcases22. Despite progress in defining the human immune response
toP. falciparum, a comprehensive investigationof the entire expressed
transcriptome has not been reported in children who develop
SMA, the group that suffers the highest global morbidity and
mortality2,5,8,23–25. Here, we present the top emergent biological pro-
cesses, networks, and pathways for the first entire expressed whole
blood transcriptome in Kenya children (<5 years old) from a holoen-
demic region of western Kenya who develop SMA as the exclusive
phenotype of severe malaria.

Results
Demographic and clinical characteristics of the study
participants
Since anemia definitions, particularly in pediatrics, require
georeferencing26, we utilized data from our cohort of 1644 children (3-
48 mos) followed over a 36-month period for which we recorded over
19,000 hemoglobin measurements. Because childhood SMA is among
the leading causes of anemia-related death in western Kenya, we uti-
lized a dynamic programming algorithm to determine average Hb
concentrations across 36months of follow-up to define categories that
best-captured childhood mortality27. This method revealed three dis-
tinct Hb categories at p < 0.001: ≤5.90 g/dL (n = 62,mortality fraction =
0.53), 5.91–8.09 g/dL (n = 209, mortality fraction = 0.15), and >8.09 g/
dL (n = 1373, mortality fraction = 0.03, Supplementary Fig. S1). These
results parallel those in a previous longitudinal birth cohort (0-48
mos.) with 14,317 repeated Hb measurements from the same geo-
graphical region28. Based on this data-driven approach, two groups
were investigated: SMA defined as Hb<6.0 g/dL and non-SMA as Hb ≥

6.0 g/dL. For the RNA-Seq analysis, 39 children (3–48 mos.) with non-
SMA and 18 with SMA were selected from the overall cohort (n = 577,
1–59 mos.), excluding those with HbSS (Supplementary Fig. S2).
Admission demographic and clinical characteristics of the children
selected for RNA-Seq inwhole blood are shown inTable 1. Basedon the
selection criteria, sex (p =0.777), overall age (p = 0.283), and distribu-
tion within age categories (p =0.781) were comparable. Glucose levels
(p = 0.377) and axillary temperature (p =0.121) were also comparable
between the groups. Consistent with more profound anemia in chil-
dren with SMA, hematocrit (p = 1.678E−09) and red blood cell counts
(p = 2.072E−09) were lower. White blood cell (p =0.007) and lym-
phocyte (p =0.001) counts were also elevated in children with SMA.
Other hematological measures were comparable between the groups,
as were parasitological indices, clinical features, and genetic variants.

Comparative cellular pathways in non-SMA and SMA reveals
divergent metabolic and immune responses
To identify unique and shared genes, a Venn diagram analysis was
performed on the 53,286 transcripts, revealing 602 genes that were
uniquely expressed in non-SMA, 493 in SMA, and 16,036 co-expressed
genes (Fig. 1a). Uniquely expressed genes in non-SMA and SMA were
then explored by canonical pathway analysis (MetaCoreTM), revealing
four significant sub-networks (Supplementary Table S1). The top-
ranked sub-network in children with non-SMA was [TFF3↔IL-
6↔IL6RA↔ADAM17↔gp130, (p = 3.180E−12)], highlighting gene ontol-
ogy (GO) processes for the crucial role of T-helper 17 cell lineage
commitment and differentiation, interleukin-6-mediated signaling,
and T-helper cell lineage commitment in driving T-helper 17 type
immune responses. The second sub-network [SHOX2↔Neur-
egulin1↔FGFR2↔Endothelin-1↔ECE2, (p = 1.930E−07)] indicates pro-
cesses that regulate cellular signaling and proliferation, particularly
through receptor tyrosine kinase and enzyme-linked pathways. The
top-ranked sub-network in children with SMA [c-Myc↔C/EBPbeta↔S-
TAT1↔STAT5 ↔ERK1/2, (p = 1.240E−200)] was associated with
signaling pathways linked to growth factors, peptide hormones, sti-
muli, and transmembrane receptor protein tyrosine kinases. The sec-
ond sub-network [ACE1↔des-Arg9-bradykinin↔BDKRB1↔des-Arg10-
kallidin↔BDKRB2, (p = 5.310E−103)] underscores positive regulation of
cellular responses associated with hormones, chemicals, and meta-
bolic processes. Collectively, these data indicate that non-SMA was
characterized by changes in immune response and cell signaling, while
SMA involved a broader spectrum of cellular activities, including
metabolic regulation and hormone responses. Differential expression
analysis of the 53,286 transcripts was then performed, identifying 1682
DEGs [false discovery rate (FDR)-adjusted, padj < 0.050]: 1403 up- and
279 down-regulated genes in children with SMA (Fig. 1b).

Insights on gene expression variance and group heterogeneity
A PCA analysis revealed that the first principal component (PCA1)
accounted for 36.1% of total variance and differentiated a portion of
the non-SMA and SMA groups, while PCA2 (13.8% total variance)
had tighter clustering for the non-SMA group (Supplementary Fig. S3).
The non-SMAgroup displayed tighter clustering (homogeneity) across
age, sex, and sickle cell traits. In contrast, the SMA group exhibited
more dispersion, notably among males and those with the HbAA trait.
Thus, while there were distinct gene expression features that dis-
tinguished between the two groups, children with SMA were more
heterogeneous.

Functional interactions and pathway networks indicate altered
immune responses, metabolic processes, and erythrocyte
differentiation
To further explore the pathogenesis of SMA, we performed non-
supervised hierarchical cluster analysis of the significant DEGs
(n = 1682). These analyses identified three unique co-regulated gene

Article https://doi.org/10.1038/s41467-024-48259-4

Nature Communications |         (2024) 15:5037 2



clusters that differentiated children with non-SMA and SMA with dis-
tinct patterns for WBCs and lymphocytes but not for parasitemia
levels, sickle cell status (HbAA vs. HbAS), or age distribution (Fig. 1c).
To gain further insight into the networks for the major co-regulated
gene clusters, canonical pathway maps for direct functional interac-
tions were generated. The network for down-regulated genes (n = 279,
cluster 1) in SMA was IRF1↔SUZ12↔IL-1β↔NRF2↔LHX2 with the tran-
scription factor, IRF1, as the central divergence hub (green-square box,
56 direct interactions) and IL-1β as the central convergence hub (red-
square box, 44 direct interactions, Fig. 1d). The top processes asso-
ciated with the functional interactions for cluster 1 were regulation of
innate immune response (p = 3.272E−17), and defense response
(p = 6.348E−17). Cluster 2 (n = 489, up-regulated) generated a TAL1↔-
LYL1↔BRD4↔FOXO3A↔EKLF1 network with the transcription factor,
TAL1, as the central divergence hub (green-square box, 343 direct
interactions). The central convergence hub in cluster 2 (red-square
boxes) was the transcription factor E2F2 (7 functional interactions),
while the secondary divergence hubs were GLUT1 and HMBS (both
with 7 direct interactions, Fig. 1e). Top interactions for cluster 2 were
metabolic process (p = 1.804E−25) and erythrocyte differentiation
(p = 1.425E−13). Collectively, SMA was associated with suppressed
innate immune stress responses, elevated metabolic processes, and
promotion of erythrocyte differentiation.

Altered leukocytic immune cell profiles in SMA
To determine if leukocytic immune profiles differed in children who
developed SMA, a bioinformatics approach was implemented using
CIBERSORTx29,30. Despite interindividual variability, transcriptional
profiling identified five immune cell types that were differentially
expressed at p < 0.050 (Fig. 2a). Children with SMA had increased
expression of naïve B cells (p = 9.741E-05) and CD8 T cells (p = 0.026)
(Fig. 2b). In contrast, the SMA group had a lower proportion of
expression for memory B cells (p = 0.035), activated dendritic cells
(p = 0.007), and neutrophils (p = 0.026) (Fig. 2b). Based on the
immune cell type profiles in the expression data, children with SMA
appeared to have a decreased antigenic response and reduced
immune priming.

Table 1 | Demographic andclinical characteristics of the study
participants

Characteristics Total non-SMA
(Hb≥6.0g/dL)

SMA
(Hb<6.0g/dL)

p-value

No. of participants, n 57 39 18

Sex, n (%)

Male 29 (50.9) 19 (48.7) 10 (55.6) 0.777a

Female 28 (49.1) 20 (51.3) 8 (44.4)

Age, months, 21.0 (21.5) 23.0 (21.0) 16.0 (22.8) 0.283b

0−12.9 12 (21.1) 7 (17.9) 5 (27.8) 0.781a

13−24.9 21 (36.8) 14 (35.9) 7 (38.9)

25−35.9 12 (21.1) 9 (23.1) 3 (16.7)

36−48.9 12 (21.1) 9 (23.1) 3 (16.7)

Glucose, mmol/L 5.1 (2.1) 5.0 (2.3) 5.3 (1.8) 0.377b

Admission tempera-
ture, °C

38.0 (1.2) 38.0 (1.0) 37.8 (0.7) 0.121b

Hematological Parameters

Hemoglobin, g/dL 9.3 (5.2) 9.9 (1.3) 4.7 (0.9) NA

Hematocrit, % 28.0
(16.4)

30.2 (5.7) 14.6 (2.6) 1.678E-
09b

Red blood cells, ×
106/µL

3.9 (2.4) 4.3 (1.0) 2.0 (0.5) 2.072E-
09b

Red cell distribution
width, %

19.4 (4.1) 18.7 (2.7) 20.6 (5.5) 0.032b

Mean corpuscular
volume, fL

69.7 (11.8) 69.5 (8.6) 73.5 (15.4) 0.105b

Mean corpuscular
hemoglobin, pg

23.3 (5.4) 22.9 (4.0) 23.8 (7.9) 0.381b

Mean corpuscular
hemoglobin con-
centration, g/dL

32.3 (6.4) 32.5 (6.8) 31.4 (5.5) 0.744b

Platelets, ×103/µL 120.0
(93.4)

120.0 (82.4) 121.5 (110.0) 0.687b

Platelet distribution
width, %

16.5 (1.2) 16.5 (1.3) 17.2 (1.2) 0.560b

Mean platelet
volume, fL

8.6 (1.7) 8.5 (1.5) 9.0 (1.6) 0.112b

White blood cells,
×103/µL

12.3 (7.6) 11.0 (6.8) 16.7 (11.2) 0.007b

Lymphocytes, ×103/µL 3.9 (3.4) 3.6 (1.9) 6.7 (6.9) 0.001b

Monocytes, ×103/µL 1.4 (1.3) 1.2 (1.2) 1.6 (1.5) 0.163b

Neutrophils, ×103/µL 5.3 (4.9) 5.3 (3.4) 5.2 (8.1) 0.813b

Granulocytes, ×103/µL 7.3 (4.8) 6.7 (3.5) 9.9 (8.6) 0.259b

Parasitological Indices

Parasite density,
MPS/µL

46,398
(82,297)

60,917
(81,169)

24,846
(92,647)

0.471b

Low (1–5000) 9 (15.8) 5 (12.8) 4 (22.2) 0.281a

Moderate (5001
– 50,000)

20 (35.1) 12 (30.8) 8 (44.4)

High (50,001 –
100,000)

16 (28.1) 14 (35.9) 2 (11.1)

Hyper (>100,001) 12 (21.1) 8 (20.5) 4 (22.2)

Geomean para-
sitemia, /µL

29,974 31,909 26,174 0.201c

Clinical Features

Respiratory distress 5 (8.8) 1 (2.6) 4 (22.2) 0.031a

Hypoxia, SpO2 < 90% 2 (3.5) 1 (2.6) 1 (5.6) 0.519a

Convulsions 22 (39.3) 16 (41.0) 6 (39.3) 0.461a

Hypoglycemia (blood
glucose
levels <2.2mM)

3 (5.4) 2 (5.1) 1 (5.9) 0.670a

Jaundice 1 (1.8) 1 (2.6) 0 (0.0) -

Table 1 (continued) | Demographic and clinical characteristics
of the study participants

Characteristics Total non-SMA
(Hb≥6.0g/dL)

SMA
(Hb<6.0g/dL)

p-value

Thrombocytopenia
(platelet count
<150 × 103/mm3)

37 (64.9) 24 (61.5) 13 (72.2) 0.317a

Genetic Variant

Sickle cell trait, n (%)

Hb AA 51 (89.5) 35 (89.7) 16 (88.9) 0.923a

Hb AS 6 (10.5) 4 (10.3) 2 (11.1)
aFisher’s exact test [presented as number (%)] with exact p-values for homogeneity was per-
formed.
bTwo-sided Mann-Whitney-U tests [presented as median (IQR)] were used to compare the non-
SMA and SMA groups.
cGroup means were compared by two-sample t-test [presented as mean (SEM)], with equal
variance.
Data are presented as number (percentages; %), median (interquartile range; IQR) or mean
(standard error of mean; SEM) unless otherwise noted. Children (n = 57) presenting with malaria
at SCRHwere recruited. Based on hemoglobin (Hb) levels, childrenwere categorized into either
non-severemalaria anemia (non-SMA; Hb≥6.0 g/dL, n = 39) or severemalarial anemia (SMA;Hb<
6.0g/dL, n = 18).
All p-values shown in bold remained below the significance level after multiple test corrections
using the Bonferroni-Holm method (familywise error rate, significance level at 0.050). For the
clinical features, none of the children had spontaneous bleeding. MPS—malaria parasites pre-
sented as mean (standard deviation).
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Blood transcriptome module repertoire analysis highlights
erythroid upregulation and neutrophil activation amidst
impaired inflammation in SMA
To further identify host immunological profiles associated with SMA,
blood-specific gene expression signatures were examined using the
BloodGen3Module in R31,32. To focus on the most enriched signals, the
top 10% of the up- and down-regulated gene clusters are presented. As
shown in Fig. 2c, d, and Supplementary Table S2, up-regulated gene
patterns were largely encompassed by erythroid cells (e.g., HBBP1,
RHD, ST3GAL1, SLC2A1, and GCLC), protein modification (e.g., autop-
hagy and ubiquitin-proteome system: FURIN, GABARAPL2, TM7SF2,
RNF14, UBE2M, TAX1BP1), and neutrophil activation (e.g., CEACAM6,
CEACAM8, CTSG, DEFA3, DEFA4). Conversely, the top down-regulated
gene signatures were for inflammation (e.g., FCGR3B, TLR1, TLR5, FPR2,
HIF1A, SOD2, HSD17B11, MAPK14, SOCS3, LIMK2, ACSL1, NDUFB3),

interferon and cytokines/chemokines (CSF2RB, FPR2, IFIT2, IFIT5,MX1,
NOD2, GBP1, GBP4, GBP5, CASP1, CASP4, CASP5,MAPK14, TAP1, PSMB9,
SP100), and neutrophils (e.g.,HSPA1A, ADAM8, FCGR2A, FCGR3B, FPR1,
CYB5R4, NCF4, HLA-E, LCP1, BCL3, IRF1, NFKBIA, BCL3, and MCL1,
Fig. 2c, d, and Supplementary Table S2). Individual-level data for the
top aggregates and accompanying gene expression modules are
shown in Fig. 2e. In summary, BloodGen3Module analysis showed that
SMA was characterized by the upregulation of erythroid cells,
enhanced neutrophil activation, and impaired inflammatory response.

Functional Enrichment Analysis Reveals Disruptions in Protein
Degradation, Heme metabolism, Cellular Clearance Mechan-
isms, and Efferocytosis in SMA
To identify characteristics associated with developing SMA, Gene
Ontology (GO) enrichment analysis was performed for three domains

602 49316036
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FAM83A

SLC6A19

TMEM233

MTCO1P40

AC243829.5
CLPS

CREB3L1

ATP6V0CP4

TMCC2

AC109454.1

APOC1

MTDHP3

GDF15

CA1

ESRG
ERFE

RN7SKP197

TRBV20OR9-2
FAM83A-AS1

LHX2
IGF2

LMOD1

FP671120.1 AC245128.1
RNA5-8SN2

RF00019
AL358473.2

LINC01932

SMA non-SMA

WBCs
Lymphocytes
Parasitemia
Sickle cell status
Age

Hyper
High
Moderate
Low

n=16 (28.07%)
n=13 (22.81%)
n=10 (17.54%)
n=18 (31.58%)

Parasitemia

-2.70
-1.88
-1.06
-0.23
0.59
1.41
2.23
3.06
3.88

-
-
-
-
-
-
-
-
-

Data Matrix

Age (Months)
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AS
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Fig. 1 | Differential gene expression analysis in children with severe malaria
anemia. EdgeR (3.16.5) was used to infer the overall distribution of differentially
expressed genes. a Venn Diagram depicting relationship (similarities and differ-
ences) of 53,286 transcripts between the clinical groups, with unique and co-
expressed genes within each group shown, and overlapping regions indicating
shared gene expression patterns. b Volcano plot showing 1,403 up-regulated and
279 down-regulated protein-coding genes in Kenyan children presenting with non-
SMA (Hb≥6.0 g/dL,n = 39) andSMA (Hb<6.0 g/dL,n = 18). The significancemeasure
(exact-test based on the negative binomial distribution) is shown on the Y-axis as
negative logarithm of p-adjusted (-Log10(padj-value), and the effect size is depicted
on the X-axis [Log2(FoldChange)]. Significance set at padj < 0.050 and
Log2(FoldChange)>1.3. Bluedots represent geneswith no significant difference, red
dots denote up-regulated genes, and green dots represent down-regulated genes.
c. Hierarchical Clustering Heatmap of 1,682 differentially expressed genes, illus-
trating clustering analysis based on Log2(FPKM+ 1) values. WBCs counts,

lymphocytes, parasitemia, sickle cell trait status, and age distributions are shown.
Clusters 1 (down-regulated in SMA) and 2 (up-regulated in SMA) are delineatedwith
hatched and solid black outlines, respectively. d, e DEGs enrichment analysis of
process networks based on clusters from the heatmap, highlighting significant
gene networks and central divergence/convergence hubs. Blue circles represent
down-regulated genes, while red circles denote up-regulated genes. The IRF1↔
SUZ12↔ IL-1β↔NRF2↔ LHX2 network contained 279 down-regulated genes
(Cluster 1) with the transcription factor, IRF1, as the central divergence hub (green
box) and IL-1β as the central convergence (red box, Fig. 1d). The TAL1↔ LYL1↔
BRD4↔ FOXO3A↔ EKLF1 network shows 489 up-regulated genes (Cluster 2) with
TAL1 as the central divergencehub (greenbox) and the transcription factor, E2F2 as
the central convergence hub containing secondary convergence hubs, GLUT1 and
HMBS (red boxes, Fig. 1e). Details of symbols used in these figures are available at:
https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf.
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(i.e., biological process, cellular components, andmolecular functions)
with the top 20 in each presented in Fig. 3a. Of the three domains,
biological processes exhibited the most significant enrichment in
children with SMA. For example, proteasome-mediated ubiquitin-
dependent protein catabolic process (padj = 8.392E−05), proto-
porphyrinogen IX metabolic process (padj = 1.266E−04), and regula-
tion of autophagy (padj = 1.275E−04) were the top-ranked biological

processes. The ubiquitin ligase complex (padj = 2.659E−03), phago-
phore assembly site (padj = 6.669E−03), and hemoglobin complex
(padj = 6.804E−03) were the top cellular components enriched
in SMA. The chromatin DNA binding (padj = 5.046E−04), protein-
macromolecule adaptor activity (padj = 6.103E−03), and transcription
corepressor activity (padj = 6.103E−03) showed the greatest enrich-
ment for molecular functions. Additional analysis using the Reactome
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enrichment identified the phospholipid metabolism (padj = 3.953E-
04), activation of BH3-only proteins (padj = 1.030E−03), and heme
biosynthesis (padj = 1.481E−03) as the top-ranked pathways in children
with SMA (Fig. 3b and c). To complement this analysis, functional
classification of the DEGs for the KEGG pathways revealed three sig-
nificant pathways: efferocytosis (padj = 1.031E−04), mitophagy-animal
(padj = 1.839E−03), and autophagy-animal (padj = 1.940E−02, Supple-
mentary Fig. S4). Together, the enrichment analyses indicated that
SMA was characterized by a multifaceted disturbance involving pro-
teindegradation (ubiquitination), hememetabolism, cellular clearance
mechanisms (autophagy), and efferocytosis, consistent with disrup-
tions in cellular homeostasis and regulatory pathways.

Canonical Pathways Converge on Alterations in Cellular Stress
Response, Immune Modulation, and Metabolic Changes in SMA
Additional characterization of SMA pathogenesis was carried out by
exploring the top 10 significant canonical pathway maps with a

Log2FoldChange =0.585 (1.5 linear FoldChange) and false discovery
rate (FDR) < 0.050 (MetaCoreTM, Fig. 4a). The top-ranked pathways in
the functional categories were: (i) apoptosis and survival—Regulation
of apoptosis bymitochondrial proteins (padj = 4.150E−02); (ii) immune
response—IFN-alpha/beta signaling via MAPKs (padj = 5.665E−03); (iii)
oxidative stress—ROS signaling (padj = 2.089E-02); (iv) regulation of
metabolism—Glucocorticoid receptor signaling in glucose and lipid
metabolism (padj = 2.089E−02); (v) signal transduction—mTORC2
downstream signaling (padj = 2.105E−02); and (vi) transcription—HIF-1
targets (padj = 1.038E−02). These pathways collectively revealed a
complex interplay of cellular stress response, immune modulation,
metabolic changes, and transcriptional regulation in SMA.

Validation of whole blood transcriptome data using an external
dataset and targeted RNA-Seq
To validate the RNA-Seq results, we utilized a transcriptomic dataset
from a Ugandan cohort of children with SMA (n = 17) and community

Fig. 2 | Cellular composition and module repertoire analysis of whole blood.
Deconvolution analysis of the different cell types in blood was determined using
CIBERSORTx. Cellular frequencies were imputed using LM22 as the signature
matrix file. a Heatmap representing the cell type expression for 22 types/subtypes
of leukocyte cell populations presented at the individual patient level in the non-
SMA (Hb≥6.0 g/dL, n = 39) and SMA (Hb<6.0 g/dL, n = 18) groups. An asterisk (*)
indicates significant differences in immune cell proportions between the two
groups determined using two-sided, two-sample t-tests withWelch correction, and
p <0.050. b Relative proportion (%) of expression for immune cell types differing
between non-SMA (n= 39) and SMA (n = 18) groups, presented asmean (SEM) after
bivariate analysis using two-sided, two-sample t-tests with Welch correction.
Module repertoire analysis of DEGs was performed using the BloodGen3Module R
package. cModulefingerprint grid plot analysis results followingWelch′s-corrected

t-test. Each module is positioned on a grid, with rows corresponding to ‘module
aggregates’ reflecting similar abundance patterns across reference datasets of
distinct immune states. The number of constitutive modules for each aggregate
varies from 1 (A9-A14, A19-A23) to 42 (A2). Red spots indicate “up-regulated mod-
ules”, while blue spots represent “down-regulated modules” in children with SMA
relative to non-SMA. d Biological/immunological function associated with each of
the modules within the grid. e Fingerprint heatmap represents patterns of anno-
tated modules across individual study participants. The heatmap displays the
abundance patterns of 85 annotated modules using an FDR correction with a 20%
differentially expressed significance level. Hierarchical clustering arranges samples
(columns) and modules (rows), with color gradients indicating proportions of
differentially expressed transcripts ranging from blue (decreased) to red
(increased).
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Fig. 3 | Functional enrichment analysis of differentially expressed genes in
severemalarial anemia.aGeneOntology (GO)EnrichmentAnalysis presenting the
top 20 enriched terms in biological process, cellular component, and molecular
function categories of DEGs in children with SMA (Hb<6.0 g/dL, n = 18) compared
to non-SMA (Hb≥6.0 g/dL, n = 39) group. Enrichment analysis was conducted using
the clusterProfiler R package, correcting for gene length bias. Enriched GO terms
were determined by hypergeometric test, with p-adjusted values <0.050 con-
sidered significant. The X-axis represents the negative logarithm of p-adjusted
(-Log10[p adjusted]) values. Significance determined by one-sided over-
representation analysis with multiple testing corrections using the Benjamini-

Hochberg procedure. b Reactome enrichment analysis of 19 enriched terms that
were significantly different in children with SMA. Pathway names are represented
on the Y-axis, while the X-axis shows the -Log10(p adj) values at <0.050. Statistical
significance was computed using one-sided overrepresentation analysis (correc-
tion by Benjamini-Hochberg procedure). c Reactome enrichment histogram dis-
playing the emerging 19 terms. Pathway names are represented on the Y-axis, while
the X-axis indicates the gene ratio of up-and-down-regulated genes. The size of the
black dots corresponds to the number of annotated genes, and the depth of red
color indicates the magnitude of enrichment (padj < 0.050).
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children (household controls, n = 12)22. Enrichment analysis with 323
genes [Log2FoldChange = 0.585 and false discovery rate (FDR) <
0.050] for pathway maps identified HIF-1 targets involved in tran-
scription as the top emergent pathway (padj = 1.405E−03, Supple-
mentary Fig. S5), the second top-ranked pathway map in our dataset.
As such, both datasets weremapped on the HIF-1 targets pathway for a
direct comparison of DEGs (Fig. 4b). Of the top 10 pathways in the
Ugandan dataset (Supplementary Fig. S5), the only other common
pathway in the Kenyan dataset was ROS signaling involved in oxidative
stress (padj = 3.994E−02, Supplementary Fig. S6). To further validate
DEGs identified in the whole blood transcriptomic analysis, we utilized
a Qiagen targeted RNA sequencing panel of 491 immune response
genes in a separate cohort of Kenyan children [non-SMA (n = 23) and
SMA (n = 20), Supplementary Table S3]. To enhance biological rele-
vance and reduce noise by excluding non-relevant variations that
might be present in either or both datasets, cluster analysis was per-
formed for the genes that were significant (p <0.050) in both datasets
(n = 147). A heatmap cluster analysis showed concordance in the fold-
change and directionality in the two platforms (Fig. 5a) with the two
datasets showing a robust correlation (r =0.612; 95% confidence
interval (CI), 0.496-0.706; p = 1.842E−16, Fig. 5b). The external dataset
and targeted RNA sequencing panel validation have high concordance
with the whole transcriptomics in Kenyan children, indicating con-
sistent DEGs across different SMA cohorts.

Comparative analysis of transcriptomics andprotein abundance
To determine if the DEGs from the RNA-Seq align with changes in
protein levels, we compared the whole blood transcriptome data with
protein abundance (measured in plasma with a 7k SomaScan

platform). MetaCoreTM was used to map genes to their respective
protein products for 35 children (n = 19 non-SMA and n = 16 SMA) who
had both measurements available. Analysis of the 405 gene/protein
pairs (p < 0.050) showed concordance in the heatmap (Fig. 6a) and a
scatterplotwith amodest positive correlation (r =0.205; 95%CI, 0.107-
0.299; p = 3.200E−05, Fig. 6b). Pathway maps were then generated in
MetaCoreTM, without thresholds, allowing for a comprehensive view of
all transcript/protein relationships. Themost aligned pathwaywasHIF-
1 targets, showing high significance in both transcripts (padj = 2.391E
−21; 95/95 nodes) and proteins (padj = 4.344E−18; 70/95 nodes, Sup-
plementary Fig. S7), indicating a concordant biological overlap
between transcriptomic and protein abundance changes, especially
for HIF-1-related processes. Collectively, these data demonstrated a
modest relationship between the magnitude and directionality of the
transcript and protein measurements with a consistent pattern of
biological changes across both molecular layers for HIF-1 targets.

Discussion
Severe life-threatening malaria is represented by distinct and over-
lapping disease features (one or more) of the following: impaired
consciousness, prostration, multiple convulsions, acidosis, hypogly-
cemia, SMA, renal impairment, jaundice, pulmonary edema, significant
bleeding, shock, and hyperparasitemia33. The clinicalmanifestations of
severe malaria and the age at which they present are largely driven by
P. falciparum endemicity8,34. The overwhelming majority of life-
threatening severe malaria occurs in holoendemic P. falciparum
transmission areas of sub-Saharan Africa in children under five years
who develop SMA,making this severemanifestation a leading cause of
childhood deaths in such regions7,8.
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Fig. 4 | Top-ranked MetacoreTM canonical pathway maps in severe malarial
anemia. a The top 10-ranked canonical pathwaymaps that emerged from the RNA-
Seq analysis in SMA (Hb<6.0 g/dL, n = 18) compared to non-SMA (Hb≥6.0 g/dL,
n = 39) according to p-adjusted values. The top 10maps that emerged represent six
functional categories: (i) Apoptosis and Survival, (ii) Immune Response, (iii) Oxi-
dative Stress, (iv) Regulation of Metabolism, (v) Signal Transduction, and (vi)
Transcription. The left Y-axis indicates the specific biological pathways that were
established by non-contradictory state-of-the-art knowledge of the major cate-
gories for humanmetabolism and cell signaling. The right Y-axis shows p-adjusted
values for each pathway map. The X-axis represents the -Log10(padj) value.

Statistical test computed using a hypergeometric probability formula, and padj <
0.050.b The second-top-ranked canonical pathwaymap for Kenyan children [SMA
(n = 18) versus non-SMA (n = 39)] and top-ranked canonical pathway map for
Ugandan children [SMA (n = 17) versus community children (household controls,
n = 12)] was Hypoxia-Inducible Factor (HIF)-targets in transcription. The red ther-
mometers indicate annotated genes that were up-regulated in children with SMA (1
=Kenyanchildren and2 =Ugandanchildren),while the blue thermometers indicate
down-regulatedgenes (1 = Kenyanchildren and2=Ugandan children). Thedetails of
symbols used in these figures are available at: https://portal.genego.com/legends/
MetaCoreQuickReferenceGuide.pdf.
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Identifying common gene pathways/networks that encompass
the diverse pathophysiological landscape of severe malaria (i.e.,
mixed phenotype) has presented significant challenges, likely
because distinct biological processes may not share common net-
works. A major advantage of studies in holoendemic malaria
regions, such as western Kenya, is that children have a distinct
pathophysiological presentation of SMA, making discovery of gene-
disease relationships more feasible. Our previous studies have
identified innate immune response genes that influence the patho-
genesis of SMA, largely through imparting changes in soluble med-
iators of inflammation7,8,12,35,36. However, this is the first investigation
to examine the entire expressed peripheral blood transcriptome in
children whose primary phenotype of severe disease is SMA. This
study identified previously undescribed biological pathways and
process networks that converge on perturbations in cellular and

immune stress responses, illustrating that the pathogenesis of SMA
is complex and multifaceted.

Differential expression analysis identified both overlapping and
unique cellular pathways between non-SMA and SMA groups.
Enhanced Th17-type immune responses and activation of signaling
cascades that regulate developmental processes and tissue regenera-
tion in the non-SMAgroup suggest enhancedpathogendefense and an
improved capacity for maintaining tissue homeostasis37–39. Activation
of gene networks involved in cell survival, growth, and differentiation,
and responses to external stimuli in children with SMA appear to
indicate adaptive responses to stress and damage40,41.

Identification of molecular patterns by hierarchical clustering
of the DEGs revealed unique co-regulated gene clusters that differ-
entiated non-severe from severe disease with distinct WBC and
lymphocyte profiles but showed association with neither level of
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Fig. 6 | Comparative analysis of transcriptomics and proteome abundance. To
assess the alignment between DEGs identified from RNA-Seq and changes in pro-
tein levels, whole blood transcriptome data were compared with protein abun-
dance measured in plasma using a 7k SomaScan platform. MetaCoreTM facilitated
the mapping of genes to their respective protein products for 35 children (n = 19
non-SMA and n = 16 SMA) with both available measurements. The analysis identi-
fied 405 gene/protein pairs with a significant association (p <0.050). a Heatmap
showing the comparison of significant (p <0.050) gene/protein pairs between the

two datasets. The Y-axis depicts the gene/protein pairs, while the X-axis represents
the assay type. The color scale depicts fold regulation (Log2), and p <0.050 cal-
culated using a generalized linear model with a negative binomial distribution.
b Correlation scatter plot demonstrating the relationship between significantly
expressed protein targets (Log2FoldChange; Y-axis) and genes (Log2FoldChange;
X-axis). A two-tailed Spearman’s test indicated a modest positive concordance
between gene expression and protein abundance (r =0.205; 95% confidence
interval, 0.107–0.299); p = 3.200E−5].
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Fig. 5 | Validation of whole blood transcriptome data using targeted-RNA-
Seq panel. Validation of the RNA-Seq results was performed by comparing the
significant (p <0.050) DEGs in the transcriptome analysis with those that were
significant in a Qiagen targeted-RNA sequencing panel (491 immune response
genes) in a different cohort of Kenyan children [SMA (n = 21) and non-SMA (n = 23).
aHeatmap illustrating the comparison of significant (p <0.050) DEGs between the
two datasets. The Y-axis depicts the gene pairs, and the X-axis represents the assay

type. The color scale depicts fold regulation (Log2). Statistical significance deter-
mined using a generalized linear model with a negative binomial distribution,
p <0.050. b Correlation scatter plot demonstrating the relationship between sig-
nificantly expressed genes in targeted QIAseq analysis (Log2FoldChange, Y-axis)
versus transcriptome data (Log2FoldChange, X-axis). A strong positive correlation
of DEGs using two-tailed Spearman’s test (r =0.612; 95% confidence interval, 0.496-
0.706;p = 1.842E−16) validates concordancebetween the two sequencingmethods.
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parasitemia nor sickle cell status. Relationships that emerged from
the analysis were then further deciphered by creating canonical
process networks. Children with SMA had a set of down-regulated
genes (Cluster 1: IRF1↔SUZ12↔IL-1β↔NRF2↔LHX2) that are central
to host signaling, cellular differentiation, and defense42–45.
Decreased expression of the transcription factor, IRF1, and down-
stream targets (i.e., IL-1β, caspases 1 and 4, and FasR) in the absence
of a Nod-like receptor family (i.e., NLRP1, NLRP3, and NLRC4)
response suggest an inability to initiate pyroptosis and dysregula-
tion of the inflammasome46–48. Up-regulation of the co-regulated
sub-network (Cluster 2: TAL1↔LYL1↔BRD4↔FOXO3A↔EKLF1) in the
SMA group indicates a physiological attempt to overcome hypoxia
through enhanced erythropoiesis and metabolic adjusts for
restoration of hemostasis and improved oxygen delivery49–51.

Results from the immuneprofilingwith CIBERSORTx indicate that
children with SMA appear to have a diminished capacity for immune
memory response, antigen presentation, and immediate pathogen
clearance (reduced neutrophils), typifying an immature or improperly
regulated immune response52. This pattern of expression is consistent
with the results obtained from immunological profiles that emerged
from the blood transcriptome module repertoire analysis in which
SMA was characterized by down-regulation of gene sets for neu-
trophils, inflammation, interferon, and cytokine/chemokines.
Decreased expression of the gene networks in children with SMA
identified by the repertoire analysis suggests impairments in innate
immune function, stress responses, pyroptosis, autophagy, and anti-
gen processing and presentation, as well as weakened respiratory
burst, reduced energy production, and metabolic derangements53–60.
The pattern of up-regulated gene sets in children with SMA implies an
attempt to enhance erythropoiesis and oxygen transport, altered
ubiquitination and protein degradation, and enhanced stress
response49,54,61. The hematological patterns captured by the CBC,
althoughnot as specific, parallel results obtained fromthe immune cell
profiling and BloodGen3 analysis. Collectively, children with SMA
exhibit a compromised immune system, characterized by diminished
memory response, impaired antigen presentation, and reduced
pathogen clearance, indicating an overarching theme of an immature
or dysregulated immune response alongside metabolic and hemato-
logical adaptations.

To gain further insight into the pathogenesis of SMA, we used a
combination of functional enrichment analysis platforms (i.e., GO,
Reactome, and canonical pathway maps) for the identification of
convergent patterns amongst central themes. The central theme in
childrenwith SMAwith high concordance in the functional enrichment
analysis was disruptions in cellular homeostasis and regulatory path-
ways. This includedmarked impairments in protein degradation, heme
metabolism, cellular clearance mechanisms such as autophagy and
efferocytosis, and alterations in metabolic processes. The proper
function of protein degradation pathways, including the ubiquitin-
proteasome system and autophagy, is essential for cellular health and
the prevention of disease62. In children with SMA, impaired protein
degradation and autophagy could lead to the accumulation of
damaged proteins and organelles, contributing to cellular stress and
dysfunction, potentially further impairing erythrocyte production or
survival, exacerbating anemia63. The observed dysregulation in
proteasome-mediated activity parallels our earlier studies that were
the first to report DEG in ubiquitin-related processes as a feature of
SMA16,64. Although altered autophagy, to our knowledge, has not been
described in human malaria pathogenesis, defects in autophagy are
common in an array of other infectious diseases65. Disruptions in heme
metabolism could also directly exacerbate anemia since impaired
heme synthesis could lead to reduced Hb levels, worsening the
oxygen-carrying capacity of already low numbers of RBCs in children
with SMA66. This pathophysiological state in the context of effer-
ocytosis impairments, the process by which dead or dying cells are

cleared by phagocytes, could lead to increased inflammation and tis-
sue damage, potentially impacting the bone marrow’s ability to pro-
duce new RBCs67,68. Our work has consistently demonstrated that
Kenyan children with SMA have cytokine/chemokine imbalances that
are associated with inefficient erythropoiesis8,69. The finding of altered
metabolic processes in childrenwith SMAmay also explain profoundly
low Hb levels since disruptions inmetabolic pathways could affect the
energy supply and biosynthetic precursors necessary for erythrocyte
production, further challenging the compensation for anemic
conditions70.

Biological validation of the whole blood transcriptome data was
performed by comparing results in the Kenyan children with those
obtained in a cohort of Ugandan children with SMA (n = 17, case) and
community children (n = 12, household)22. Functional enrichment
analysis of the Ugandan dataset revealed HIF-1 targets as the top-
ranked pathway map and the second-ranked pathway map in the
Kenyan children. This finding is particularly relevant to SMA since the
HIF-1 pathway plays a central role in the response to low oxygen
levels71,72. For example, activation of the HIF-1 pathway assists in
adapting to hypoxic conditions by activating genes involved in ery-
thropoiesis, angiogenesis, andmetabolism to enhance oxygendelivery
and utilization71,72. Enrichment analysis for the two datasets also iden-
tified another common pathway map in children with SMA that com-
plements the HIF-1 findings: ROS signaling involved in oxidative stress.
Due to the reduced capacity for oxygen transport in SMA, tissues may
experience hypoxia, leading to increased production of ROS that can
have a dual effect, inducing cellular damage and triggering adaptive
responses to improve oxygen delivery and utilization73. The protective
physiological response involves upregulation of antioxidant defenses
to counterbalance the harmful effects of ROS and reduce damage73.
However, since persistent oxidative stress can exacerbate tissue
damage, influencing the progression and severity of anemia by
impairing erythrocyte function and lifespan63, it remains unclear if this
central emergent theme in children with SMA is harmful or beneficial.
In summary, despite the Ugandan children being older and experien-
cing a lower level of P. falciparum transmission than the children in
western Kenya, activation of pathways in response to hypoxic condi-
tions (i.e., HIF-1 and ROS) appears to be a generalizable theme. These
results are consistent with upregulated erythroid responses in
response to ROS previously reported in the Ugandan children with
SMA22. However, some patterns in the Kenyan cohort differ such as
down- versus up-regulation of activated dendritic cells and down-
versus up-regulation of cytokine/chemokine and inflammation
responses, perhaps due to lower levels of adaptive immunity in Kenya
children who were substantially younger.

Additional validation of the whole blood transcriptome data was
performedusing a targetedRNA-Seqpanel that contained 491 immune
response genes. This validation was performed in a separate group of
Kenyanchildren from the same region. For improvedbiological insight
and elimination of extraneous variations, the comparative analysis
was conducted for the 147 common significant genes (p < 0.050) in
both datasets. There was strong concordance between the whole
blood transcriptome and targeted RNA-Seq panel, suggesting a high
level of reliability and consistency across the different methodological
approaches.

Comparing transcriptome data with protein abundance is crucial
for understanding how gene expression levels correlate with actual
protein production, providing insights into the biological processes
and cellular functions in the context of SMA. Moreover, such a com-
parison accounts for post-transcriptional and post-translational mod-
ifications, offering a more comprehensive view of cellular dynamics.
The comparative analysis between the transcriptomics data and pro-
tein abundance, involving 19 non-SMA and 16 SMA with both mea-
sures, uncovered 405 gene/protein pairs with a modest correlation,
reinforcing the biological relevance of our findings. The modest
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correlation is consistent with other studies showing the weak pre-
dictive power of expressed transcripts with their associated proteins,
typically R2 values < 10% 74–78. The top observed alignment between
gene expression and protein levels was for HIF-1 targets, reflecting
consistency for both the quantitative and directional shifts across
these molecular dimensions. Moreover, these results converge with
other enrichment platforms utilized in our analyses, highlighting the
central theme of responses generated in states of hypoxia.

In conclusion, an unbiased RNA-Seq analysis capturing the entire
expressed blood transcriptome identified key molecular aspects that
encompass the complex pathogenesis of SMA. These analyses showed
that SMA is defined by disruptions in cellular homeostasis and
diminished immune responses, with notable impairments in protein
degradation and cellular clearance (ubiquitin-related processes and
autophagy), and metabolic processes. Strengths of this study include
the extensive clinical characterization of the cohort which allowed for
the exclusion of co-infections known to influence the immune
response79–81, and a robust sample size. Another strengthof the study is
the potential generalizability of themes discovered indifferent cohorts
of children with SMA in regions with differing endemicity. Limitations
of the study include potential generalizability to other forms of severe
malaria, such as cerebral malaria, which is likely a distinct pathogen-
esis. Additional limitations include the lack of investigation for host-
pathogen interactions. We are currently investigating transcriptional
changes in P. falciparum in the context of the findings presented here
to gain a better understanding of howchanges in the parasite influence
disease severity. Collectively, these findings suggest that SMA was
characterized by adaptive yet potentially insufficient responses to
stress and damage for the complex interaction between immune and
metabolic pathways. Findings from this study underscore the multi-
faceted nature of SMA and the importance of a holistic understanding
for developing targeted therapies to improve clinical outcomes in
future work. By uncovering the complex biological underpinnings of
SMA, the clinical relevance of this research has the potential to facil-
itate improved therapeutic strategies, targeted interventions, and
ultimately, better health outcomes for affected children.

Methods
Study participants
This prospective acute febrile cohort study was conducted at Siaya
County Referral Hospital (SCRH), located in a holoendemic P. falci-
parum transmission region in western Kenya where SMA is among the
main causes of childhood morbidity and mortality in the
community2,5,24,25,82,83. Individuals inhabiting the study area are pre-
dominantly from the Luo group ( > 96%), an ethnically homogeneous
population. In the rural region of Siaya County, Kenya, the assignment
of sex at birth is influenced by the available medical facilities and the
cultural practices prevalent within the community. Local healthcare
practitioners often follow traditional methods to assign sex at birth
basedonphysical characteristics. It is important to note that thebinary
categorization used in this context does not fully capture the spectrum
of gender identities recognized by some of the local cultures. This
study relies on definitions provided by local health authorities and
community leaders, acknowledging that these practices vary across
different communities. Female andmale children (sex at birth, age 1-59
mos.) presenting at SCRH with symptoms of infectious diseases with
the following inclusion criteria were enrolled: temperature ≥37.5 °C
(axillary), distance to hospital ≤25 km, parent/guardian willing/able to
sign an informed consent and agree to present for day 14 follow-up.
Exclusion criteria for the children included: previous hospitalization
for any reason, positive malaria RDT test results but negative periph-
eral parasitemia, an episode of malaria within the past onemonth, and
presentation for non-infectious diseases. Based on these criteria, 577
children were enrolled (03/2017 to 09/2020, Supplementary Fig. S2).
At enrollment, demographic and clinical data were collected, and a

physical examination was performed. Prior to treatment with anti-
malarials or other medications, Venipuncture blood samples (3-4mL)
were collected for laboratory measures.

Ethics statement
The study was approved by the University of NewMexico Institutional
Review Board, and the Maseno University Scientific and Ethics Review
Committee. Written informed consent was provided by the parents/
legal guardians of the study participants.

Clinical disease definitions
It is important to define anemia based on geographic location because
varying environmental (e.g., malaria endemicity, altitude), genetic
(e.g., hemoglobinopathies), and dietary factors influence the pre-
valenceand severity of anemia. Regional variationsnecessitate tailored
definitions of anemia to ensure accurate diagnosis and effective
treatment. To geographically define anemia categories, we followed a
cohort of children (n = 1654) over a 36-month period. For the deter-
mination of clinical disease definitions based on anemia status, we
included 1644 children (3-48 mos.) with robust follow-up data that
included over 19,000 Hb measurements for the modeling (Supple-
mentary Fig. S1). Details of the study area have previously been
published25. A description of the study participants and longitudinal
follow-up schedule for the individuals utilized in the analyses were
previously described14. The analysis presented utilized two cohorts of
children recruited and followed with identical parameters across a
temporal continuum: cohort 1 (2003–2005; n = 777) and cohort 2
(2007–2012; n = 877). Briefly, children presenting with suspected
malaria infections or reporting for routine vaccinations were recruited
at SCRH. Childrenwith varying severities ofmalarial anemia (n = 1319)
and aparasitemic controls (n = 335) were enrolled following screening
for malaria parasites. Exclusion criteria included: children with non-
falciparum parasite strains, confirmed cerebral malaria, previously
hospitalized for any reason, or had reported use of antimalarial ther-
apy in the two preceding weeks. After enrollment (day 0), children
(n = 1654) were scheduled for follow-up visits on day 14 (if they were
febrile upon enrollment) and quarterly over 36 months. Physical eva-
luations and laboratory tests required for comprehensive clinical
management of the patients were performed at enrollment, day 14,
and each acute and quarterly visit [complete blood counts (CBC),
malaria parasitemia measures, and evaluation of bacteremia where
indicated]. All samples and biological materials were collected before
treatment with antimalarials or other medications. Children were
treated according to the Ministry of Health-Kenya guidelines that
include antimalarials and blood transfusion of children with Hb<5.0 g/
dL and/or Hb < 7.0 g/dL in the context of respiratory distress.

Since SMA is among the leading causes of malaria-related mor-
tality in the region, hemoglobin concentrationswereaveraged for each
individual across all visits and correlated with mortality rates. A
dynamic programming approach was employed which exhaustively
tested all possible splits from 2-way to 10-way27. The criterion for the
optimal number of splits was the largest κ for which all pairwise chi-
square tests between resulting groups were significant at p < 0.001.
The dynamic programming algorithm exhaustively searched through
all possible cut points for hemoglobin to minimize the function Fκ,
which is defined as: Fκ = -∑ (from j = 1 to k) [−2nj(pj log(pj) + (1—pj)
log(1—pj))], where pj is the proportion of one’s (deaths) in segment j,
and nj is the number of observations in segment j. This function
represents the sum of the negative double products of the number of
observations in each segment and the binary log-likelihood for each
segment. Data were segmented into k subgroups tominimize the sum.
The chi-squared statistic for each potential split was calculated as:
X^2 = F0—Fκ, where F0 is the function value for the entire sample. The
p-value for assessing the significance of each split was obtained from
the chi-squared distribution: p = chisqr(X^2, k − 1). This method

Article https://doi.org/10.1038/s41467-024-48259-4

Nature Communications |         (2024) 15:5037 10



revealed three significantly different (p <0.001) Hb level groups:
≤5.9 g/dL (n = 62, mortality fraction=0.53), 5.91-8.09 g/dL (n = 209,
mortality fraction=0.15), and >8.09 g/dL (n = 1,373, mortality frac-
tion=0.03). These independently derived data parallel anemia cate-
gories defined from a previous longitudinal birth cohort (0-48 mos.)
with 14,317 repeated Hb measurements in the same geographical
region: mild anemia (8.0-9.0 g/dL), moderate anemia (6.0-7.9 g/dL,
and severe anemia ( < 6.0 g/dL)28. As such, children with P. falciparum
infections (any density parasitemia) were stratified into two groups
based on Hb concentrations: Hb≥6.0 g/dL (non-SMA, n = 39), and
Hb<6.0 g/dL (SMA, n = 18). Although the primary outcome of severe
malaria in this study was SMA, other clinical complications were also
determined. Respiratory distresswas defined as: (tachypnea criteria by
age); 0-2 mos. (60 breaths per min., bpm), 2-12 mos. (50 bpm), 1-5 yrs.
(40 bpm), retractions (in-drawing of the chest wall); grunting; nasal
flaring; use of accessory muscles for breathing; and hypoxia
(SpO2 < 9084–86. Additional definitions included convulsions (tonic-
clonic seizures), hypoglycemia (blood glucose levels<2.2mM), jaun-
dice (yellowing of skin and/or sclera), and thrombocytopenia (platelet
count <150 × 103/mm3)33. Children with non-SMA were defined as
those presenting with a malaria-positive smear from P. falciparum
parasitemia (of any density) and Hb ≥6.0g/dL in the absence/presence
of other features of severemalaria defined above. Sincewehave shown
that co-infections (i.e., HIV and bacteremia) exacerbate the develop-
ment of SMA, HIV testing and blood cultures were performed on all
children per our published methods79–81. Parents/legal guardians of
participating children received pre- and post-test HIV&AIDS
counseling.

Laboratory procedures
Upon presentation to hospital, children were screened for presence
of malaria parasites using previously published methods25. Briefly,
heel/finger-prick blood ( < 100 μL) was drawn and used to determine
parasitemia and Hb status for initial screening. Giemsa-stained thick
and thin blood smears were then prepared and examined for asexual
malaria parasites under oil immersion microscopy25. The number of
P. falciparum parasites was determined per 300 leukocytes, and the
parasite density was estimated using the total leukocyte count for
each patient. Complete blood counts (CBCs) were determined using
a DxH 500 hematology analyzer (Beckman-Coulter). HIV-1 status was
determined by two rapid serological antibody tests (i.e., Unigold™
and Determine™) and confirmed by HIV-1 proviral DNA PCR tests as
previously described80. Bacterial cultures were performed on
~1.0mL of Venipuncture blood collected aseptically, inoculated into
pediatric blood culture bottles (Peds Plus, Becton-Dickinson), and
incubated in an automated BACTEC 9050 system (Becton-Dick-
inson) for 5 days. Positive cultures were examined by Gram staining
and sub-cultured on blood agar, chocolate agar, or MacConkey agar
plates. Bacterial isolates were identified according to standard
microbiologic procedures as described previously81. To further
characterize potential causes of anemia, sickle-cell trait status was
determined by alkaline cellulose acetate electrophoresis (Helena
BioSciences).

Study participant selection for RNA-Seq
To select samples for the RNA-Seq from the 577 enrolled study parti-
cipants, childrenwithmalaria were stratified into two groups based on
Hb levels (i.e., Hb≥6.0 g/dL and Hb<6.0 g/dL), and then matched
according to age and sex. Further selection criteria for the RNA-Seq
included omitting children with any detected co-infections, namely
HIV-1, and laboratory-confirmed blood-borne bacterial cultures79–81.
Children with sickle cell disease (HbSS) were also excluded from ana-
lysis. All data presented for analysis, and used to generate figures and
tables excluded children presenting with HbSS. This selection strategy
yielded 39 children with non-SMA (Hb≥6.0g/dL) and 18 children with

SMA (Hb<6.0 g/dL). Since severe malaria in western Kenya presents as
SMA, it was considered the primary outcome variable in RNA-Seq
analysis. However, samples of participants with concomitant clinical
features of respiratory distress, hypoxia, convulsions, hypoglycemia,
jaundice, and thrombocytopenia were included in the analysis.

RNA isolation, library construction, and sequencing
Approximately 500μL of whole blood collected from venipuncture
prior to treatmentwas stabilizedwith Trizol® (ThermoFisher Scientific
Inc.), immediately frozen in liquid nitrogen, and then subsequently
stored at −80 °C. Total RNA was batch-isolated using E.Z.N.A® Total
RNA Kit (Omega Bio-Tek Inc.), treated with RNase-free DNase I (New
England Biolabs Inc.), and further processed using RNA Clean & Con-
centrator (ZYMO Research Corp.). Prior to library preparation and
sequencing, RNA degradation and contamination were captured on
agarose gels, with purity confirmed using a NanoPhotometer®
(IMPLEN). RNA integrity and quantification were measured using the
RNA Nano 6000 Assay Kit on a Bioanalyzer 2100 system (Agilent
Technologies). RNA quality was assessed using RNA Integrity Number
(RIN), and only samples with RIN value of >8 were used for library
preparations. For quality control, a predefined exclusion criteria based
on RNA quality and read counts was applied, with the error rate set at
<1% (GEO accession number GSE255403). To capture the entire
expressed transcriptome, an amount of 1 μg RNA/sample was used as
input material for sequencing library construction and postglobin
mRNA depletion using GLOBINclear™-Human Kit (Thermo Fisher Sci-
entific Inc.). Sequencing libraries were generated using NEBNext®
UltraTM RNA Library Prep Kit for Illumina (New England Biolabs) fol-
lowing the manufacturer’s protocol. mRNA was purified from total
RNA using poly-T oligo-attached magnetic beads. Fragmentation was
performed using divalent cations, with an elevated temperature in
NEBNext First Strand Synthesis Reaction Buffer (5X). To synthesize a 1st

strand cDNA, random hexamer primer and M-MuLV Reverse Tran-
scriptase (RNase H-) were used. The 2nd strand cDNA was synthesized
using DNA Polymerase I and RNase H. Any residual overhangs were
transformed into blunt ends using the exonuclease/ polymerase
activities. To prepare the DNA fragments for hybridization, NEBNext
Adaptor with hairpin loop structure was ligated to the adenylated 3′
ends of the fragments. The resulting cDNA fragments were purified
using the AMPure XP system (Beckman Coulter) to select preferential
fragments of 150 ~ 200bps in length. The USER Enzyme (New England
Biolabs) was used with size-selected, adaptor-ligated cDNA at 37 °C for
15min followed by 5min at 95 °C before PCR. Amplification was per-
formed with Phusion High-Fidelity DNA polymerase, Universal PCR
primers, and Index (X) Primer. The PCR amplicons were purified
(AMPure XP system) and library quality was assessed on the Agilent
Bioanalyzer 2100 system (Agilent Technologies). Clustering of index-
coded samples was performed on a cBot Cluster Generation System
using PE Cluster Kit cBot-HS (Illumina Inc.). Triplicate libraries were
generated from SMA and non-SMA samples collected at hospital visit
(day 0). Sequencing was performed to a depth of >20 million high-
quality mappable reads on an Illumina NovaSeq 6000 sequencer
(Novogene Corporation Inc.). All the downstream analyses were based
on clean data with high quality. None of the samples were excluded
from the analysis due to either RNA quality or number of reads
obtained.

Bioinformatics analysis
Quality control. Raw data were quality-controlled and filtered using
fastp87. Clean reads were obtained by removing reads containing
adapter, ply-N sequences (N > 10%), and low-quality reads (base quality
of >50% bases of the read is ≤5) from raw data. In addition, Q20, Q30,
and GC content of the clean data were calculated, and downstream
analysis was performed using high-quality clean data (GEO accession
number GSE255403).
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Mapping to reference genome. Reference genome and gene model
annotation files were downloaded from a genome website browser
(NCBI/UCSC/Ensembl) directly. Sequences were aligned to the human
reference genome (GRCh38.p13)88 using the STAR software version
2.589. With a depth of sequencing covering >20 million mappable
reads, the totalmapped reads ratiowas >70% in the SMAgroup relative
to non-SMA (GEO accession number GSE255403), representing more
than half the subjects in the case group.

Quantification. HTSeq v0.6.1 was used to generate read counts map-
ped to each gene90. The expected number of Fragments Per Kilobase
Million Reads (FPKM) of each gene was calculated according to the
gene, gene length, and number of reads mapped to the gene91. An
FPKM> 1was set as a threshold for a gene to the considered expressed.

Differential expression analysis. Differential expression analysis of
the two clinical conditions (non-SMA vs. SMA) was performed using
the EdgeR (3.16.5) package, utilizing a negative binomial (NB) based
statistical model on RNA count data. The resulting p-values were
adjusted using the Benjamini-Hochberg procedure to control for the
false discovery rate92. Genes identifiedby EdgeRwith adjustedp-values
(padj) of <0.050 were assigned as differentially expressed. To identify
the correlation between different genes, samples were clustered using
expression level FPKM utilizing the hierarchical clustering distance
method.

Principal component analysis (PCA). For high-dimensional data
reduction, identification of variance, and visualization of groups and
trends, PCA was performed on the DEGs in non-SMA and SMA using
the factoextra (1.0.7) package inR. The ‘prcomp()’ functionwasused to
calculate the principal components, with the model data consisting of
57 observations (participants) of 1,682 variables (genes). Demographic
(age and sex) and genetic variants (Hb AA and HbAS) data were inte-
grated with the gene annotation file to generate separate 2D plots.

Leukocytic immune cell profiling
The relative percentage of different immune cell types/subtypes in
whole blood was imputed using CIBERSORTx29,30. This analytical tool
processes gene expression data from a bulk admixture of different cell
types to estimate the abundance of member cell types in a mixed cell
population29. The curated signature matrix file, LM22, was used as the
reference to deconvolute the relative fraction of different cell types in
whole blood, resulting in inference of 22 types/subtypes of leukocytes.
Imputation of cell-type specific gene expression levels was performed
at the sample level with the output presented as the fractional pro-
portion in whole blood for each study participant. The relative pro-
portions of immune cell types were then compared between the non-
SMA and SMA groups.

Module repertoire analysis of DEGs. To gain insight into coordinated
expression of gene groups and their role in biological processes, par-
ticularly for immune response genes, modular analysis of blood tran-
scriptome data was analyzed using the BloodGen3Module package in
R. BloodGen3 consists of a fixed repertoire of transcriptional modules
tailored for the analysis and interpretation of blood transcriptome
datasets. The repertoire includes 382 modules with functional anno-
tations, covering >14,000 transcripts, and allows for fingerprint
representations. Group comparison analyses were performed using
the Welch’s-corrected t-test (‘Groupcomparison’) function. For
individual-level comparisons, the FDR threshold was 20%.

Enrichment analysis. ClusterProfiler93,94 R package was used to
implement the enrichment analysis. GO analysis of DEGs was used to
infer functional and biological functions, correcting for gene length
bias93. Reactome Enrichment Analysis was used to identify pathways

that mapped to biological and cellular networks95. Significantly enri-
ched pathways were identified with KEGG using the R package
‘ClusterProfiler’93. For all analyses, padj < 0.050 were considered sig-
nificant enrichment. Confirmation and further discovery of the find-
ings were implemented by using MetaCoreTM (https://clarivate.com/
products/metacore/) to identify DEGs that mapped to GO processes,
networks, and pathways.

Validation of transcriptome profiles
Toperform an independent validation of our findings, we leveraged an
independent cohort of Ugandan children (18mos. to 12 years) inwhich
whole blood transcriptomics was conducted on children with SMA
(n = 17) and community children (household controls, n = 12)22. Vali-
dation was performed by identifying the top-expressed pathways in
MetaCoreTM with identical parameters utilized in the analysis of the
Kenyan cohort [log2foldchange = 0.585 (1.5 linear FoldChange) and
FDR <0.050]. Additional validation was performed by utilizing a Qia-
gen Targeted RNA-Seq panel (491 genes: immune response) con-
ducted on a different set of children with SMA (n = 20) and non-SMA
(n = 23) to corroborate the expression of overlapping genes identified
in the transcriptomic analysis.

Sample selection for QIA-seq analysis. Study participants for RNA-
Seq analysis were selected from a pool of children with malaria
(n = 1,218, aged 3-36months) and stratified into two discrete groups of
SMA (Hb<6.0 g/dL, Avg, 4.05 g/dL n = 20, cases) and non-SMA
(Hb≥6.0 g/dL Hb, Avg, 9.96 g/dL, n = 23, controls). Exclusion criteria
comprised children with co-morbidities such as bacteremia, HIV, and
hemoglobinopathies (sickle cell disease), which can affect the anemia
outcome. On the first hospital visit before treatment interventions,
leukocytes of the children were collected and used for this study.

RNA isolation, library construction, and sequencing. To maintain
the integrity of RNA,WBCpellets were kept in an equivalent volume of
Trizol® LS (Thermo Fisher Scientific Inc.) after collection from the
study site at SCRH. Total RNA was extracted using the RNeasy® Plus
Micro Kit (Qiagen) according to the manufacturer’s protocol (Qiagen)
and purified using the RNeasyMicro Kit (Qiagen). The RNA quality was
validated using the 260/280 and 260/230 ratios on a NanoPhot-
ometer® (IMPLEN), and the integrity assessed using an automated
capillary electrophoresis on an Agilent 2100 Bioanalyzer (Agilent
Technologies) according to themanufacturer’s protocol. RNA samples
with a RIN < 8 were excluded from QIAseq analysis. Total RNA (125 ng)
was used to synthesize cDNA using the First Strand Kit reagents (Qia-
gen) specific for the Targeted Human Inflammation and Immunity
Transcriptome Panel (RHS-005Z, Qiagen). Following cDNA synthesis,
gene-specific primers with twelve-base random molecular barcodes
were added into each unique target strand via single primer extension,
allowingquantificationof gene expression in eachmultiplexed sample.
A double QIAseq bead clean-up was done for the samples, followed by
an eight-cycle limited gene-specific PCR reaction using a gene-specific
primer and a universal primer in a total reaction volume of 25 µL. A
second QIAseq bead clean-up was done to eliminate excess primer
dimers prior to the final universal enrichment and sample-index PCR
reaction of 18 cycles. A last universal enrichment index PCR step
included the addition of dual unique index primers to allow for the
pooling of all samples prior to sequencing. After thefinal PCR reaction,
the QIAseq bead was cleaned to eliminate unincorporated primers. A
QIAseq Library Quant Array Kit (Qiagen) was used to quantify the final
purified QIAseq libraries. Individual QIAseq targeted RNA libraries
were normalized and pooled using equimolar quantities based on the
QIAseq Library Quant Array Kit (Qiagen) concentrations. Specifically,
the pooled samples were denaturedwith 0.2MNaOH and then diluted
with hybridization buffer HT1 to a final dilution concentration of 1.2
pM. EachQIAseq Targeted RNA library was normalized to 4 nMwith an
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average length of about 300bp. Equal volumes of the equally con-
centrated libraries were mixed to create the final library pool for
sequencing on an Illumina NextSeq500 device. Sequencing run were
performed with 1×151 cycles and 8 bp dual index reads. Three inde-
pendent sequencing reactions were used to complete the Forward
Read 1 sequence with QIAseq Read1 Primer I (Qiagen) and then dual
multiplexing of indices with Index 1 Read and Index 2 Read Primers
(Illumina).

Data processing and analysis. The generated FASTQ files were
analyzed using QIAseq RNA Quantification pipelines (Qiagen).
Trimming of primers prior to read alignment was performed to
confirm sequence identity by the internal sequence. Data normal-
ization was performed by obtaining the average unique molecular
index (UMI) tag count for the selected reference genes in each
sample and in each group to ensure stability across Samples. The p-
values were calculated using a generalized linear model with a
negative binomial distribution of the replicate normalized gene
expression data for each gene and expressed as a fold-change
(FC > 1.5 and p < 0.050) in SMA relative to non-SMA, with p < 0.05
indicating significance.

Differential expression analysis. Expression analysis using molecular
tag counts from RNA-Seq file was done using Targeted RNA Panel
Secondary Data Analysis web portal (v1.0, Qiagen). Samples that failed
the Data QC step from missing reference genes or suspected DNA
contamination quality control were excluded. After normalizing the
data with ten reference genes encompassed in the QIAseq Targeted
RNA Panels, fold regulation and fold-change were calculated, and p-
values generated.

Comparative Analysis of Transcriptomics and Proteomics
For this analysis, the significant (p < 0.050) transcripts and proteins
were compared.

Sample selection for proteomic analysis. Tomitigate inter-individual
variability in the analysis, we selected plasma samples from the same
group of children whose whole blood transcriptome was performed.
This strategy resulted in 40 children with plasma samples in sufficient
quantities and quality available for proteomic analysis, stratified into
SMA (Hb<6.0 g/dL, n = 18, cases) and non-SMA (Hb≥6.0 g/dL, n = 22,
controls).

Multiplex plasma proteome profiling by microarray detection.
Venipuncture whole blood samples (1.0 to 3.0mL) were collected and
instantly centrifuged (311 ×g) to separate plasma, aliquoted, and stored
at −80 °C until use. The samples (no previous freeze-thaw cycles) were
analyzedon a 7kSomaScanAssayv4.1 platform (SomaLogic), following
themanufacturer’s protocol. Briefly, plasma samples were diluted, and
SOMAmers synthesizedwith a fluorophore, photocleavable linker, and
biotin. Diluted samples were incubated with dilution-specific SOMA-
mers attached to streptavidin beads. The bound proteins were tagged
with biotin, while the unbound proteins were washed away. To dis-
sociate the photocleavable linker, the mixture was exposed to ultra-
violet (UV) light, releasing complexes into the solution. Specific
complexes remained bound while non-specific ones dissociated. A
polyanionic competitor was introduced to prevent the reformation of
non-specific complexes. Subsequently, new streptavidin beads cap-
tured thebiotinylatedproteins andboundSOMAmers. The SOMAmers
were released by denaturing the proteins, and fluorophores measured
on a microarray chip. The fluorescence intensity, measured in relative
fluorescence units (RFU), inferred the quantity of epitope in the ori-
ginal plasma sample96. The aptamer-based scan had median limit of
detection (LOD) of 125 fM or 5.3 pg/mL97.

Data processing and analysis. Data standardization steps that com-
prised normalization and calibration were applied to mitigate sys-
tematic biases in raw assay following microarray feature aggregation
(Supplementary Table S4). The normalization step involved a sample-
by-sample adjustment to overall signals within the plasma dilutions,
while calibration constituted an overall plate, and SOMAmer-by-
SOMAmer adjustments, aimed at decreasing between-plate varia-
bility. The final analysis incorporated 35 samples that passed the
quality control check, while five samples were excluded due to ele-
vated normalization scale across dilution factors (n = 3), high hybridi-
zation scale factor (indicating a leak, n = 1), or clogged/low volume
(n = 1). The proteinmeasurements (RFU)were comparedbetween non-
SMA and SMA groups using a generalized linearmodel with a negative
binomial distribution. Proteins were matched to their respective
transcripts using network algorithms in MetaCoreTM, and correlation
analyses determined using Spearman’s test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene expression data is available in the Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under the accession num-
ber GSE255403. Source data are provided with this paper.
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