• Login
    • Login
    Advanced Search
    View Item 
    •   Maseno IR Home
    • Journal Articles
    • School of Public health & Community Development
    • Department of Biomedical Sciences
    • View Item
    •   Maseno IR Home
    • Journal Articles
    • School of Public health & Community Development
    • Department of Biomedical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Habitat selection and vertical inheritance drive archaeal community structure in arthropod guts

    Thumbnail
    View/Open
    dcd.pdf (14.06Mb)
    Publication Date
    2015
    Author
    Carsten Dietrich, James Nonoh, Kristina Lang, Lena Mikulski, Katja Meuser, Tim Köhler, Hamadi I Boga, David K Ngugi, David Sillam-Dussès, Andreas Brune
    Metadata
    Show full item record
    Abstract/Overview
    The arthropod gut is streamlined to anaerobically mineralize mostly plant-derived organic matter. In only five major arthropod groups (millipedes, scarab beetle larvae, cockroaches, and lower and higher termites) are considerable amounts of methane formed by methanogenic archaea at the end of this process. Bacterial communities in the guts of termites and cockroaches mirror major events in the evolutionary history of their host. Whether this is also true for archaeal communities or whether diet is the key factor is unknown. Here, we used both clone libraries and high-throughput sequencing to document that the archaeal community structure in arthropod guts and the phylogeny of archaeal lineages is dependent on the host group and to a lesser extent on diet. With the exception of lower termites, all major arthropod groups contained at least one group each of hydrogenotrophic and methylotrophic methanogens regardless of the host diet. Hydrogenotrophic methanogenesis is almost exclusively carried out by members of the genus Methanobrevibacter, whereas methyl reduction is accomplished by different genera of the orders Methanomassiliicoccales and Methanosarcinales. The occurrence of specific genera of these obligately hydrogendependent methylotrophs differs among the hosts, which indicated that host habitat selection is the major driving force for arthropod archaea. Analysis of the phylogeny of the most abundant archaeal lineages in the arthropod host gut revealed host-group-specific clusters of archaeal lineages. Since cocladogenesis was absent in the resulting phylogenetic trees, cospeciation could be excluded what indicates
    Permalink
    https://repository.maseno.ac.ke/handle/123456789/1665
    Collections
    • Department of Biomedical Sciences [95]

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback

     

     

    Browse

    All of Maseno IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Maseno University. All rights reserved | Copyright © 2022 
    Contact Us | Send Feedback